9 research outputs found

    Identification and functional analysis of an autophagy-related gene TdAtg8 in wild emmer wheat under biotic (fusarium culmorum) and abiotic (drought) stress conditions

    Get PDF
    Autophagy, literally self eating, is an evolutionary conserved catalytic process for vacuolar degradation of intracellular components, previously examined in yeast, mammals and plants. Abiotic stress factors, including nutrient starvation, oxidative stress, salt stress and osmotic stress have been previously reported to induce autophagy in plants. In this study, for the first time, Atg8 gene was cloned from wild emmer wheat (TdAtg8) and the role of autophagy under biotic and abiotic stress conditions was investigated. Examination of TdAtg8 expression patterns indicates that Atg8 expression was immensely upregulated under drought stress, especially in the roots. Monodansylcadaverine (MDC) and Lysotracker Red markers utilized to observe autophagosomes revealed that autophagy is constitutively active in T. dicoccoides. Moreover, autophagy was determined to be more active in plants exposed to drought stress when compared to plants grown under normal conditions. TdAtg8 gene was demonstrated to complement Atg8 yeast mutants grown under starvation conditions in a drop test assay. For further functional analysis, ATG8 protein from T. dicoccoides were expressed in yeast and analyzed with western blotting. TdAtg8 was also silenced in wild emmer wheat by virus-induced gene silencing and its role was investigated in the presence of a plant pathogen, Fusarium culmorum. This response, for the first time, showed that fungi sporulation decreased in Atg8 silenced plants in comparison to controls. Based on the data obtained, we conclude that the plants become more resistant against the plant pathogen when the autophagy was inhibited

    A SARS-CoV-2 protein interaction map reveals targets for drug repurposing

    Get PDF
    The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 2.3 million people, killed over 160,000, and caused worldwide social and economic disruption1,2. There are currently no antiviral drugs with proven clinical efficacy, nor are there vaccines for its prevention, and these efforts are hampered by limited knowledge of the molecular details of SARS-CoV-2 infection. To address this, we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), identifying 332 high-confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (29 FDA-approved drugs, 12 drugs in clinical trials, and 28 preclinical compounds). Screening a subset of these in multiple viral assays identified two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the Sigma1 and Sigma2 receptors. Further studies of these host factor targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19

    Revealing molecular pathways for cancer cell fitness through a genetic screen of the cancer translatome.

    No full text
    The major cap-binding protein eukaryotic translation initiation factor 4E (eIF4E), an ancient protein required for translation of all eukaryotic genomes, is a surprising yet potent oncogenic driver. The genetic interactions that maintain the oncogenic activity of this key translation factor remain unknown. In this study, we carry out a genome-wide CRISPRi screen wherein we identify more than 600 genetic interactions that sustain eIF4E oncogenic activity. Our data show that eIF4E controls the translation of Tfeb, a key executer of the autophagy response. This autophagy survival response is triggered by mitochondrial proteotoxic stress, which allows cancer cell survival. Our screen also reveals a functional interaction between eIF4E and a single anti-apoptotic factor, Bcl-xL, in tumor growth. Furthermore, we show that eIF4E and the exon-junction complex (EJC), which is involved in many steps of RNA metabolism, interact to control the migratory properties of cancer cells. Overall, we uncover several cancer-specific vulnerabilities that provide further resolution of the cancer translatome

    Autophagy-related gene, TdAtg8, in wild emmer wheat plays a role in drought and osmotic stress response

    No full text
    An autophagy-related gene Atg8 was cloned for the first time from wild emmer wheat, named as TdAtg8, and its role on autophagy under abiotic stress conditions was investigated. Examination of TdAtg8 expression patterns indicated that Atg8 expression was strongly upregulated under drought stress, especially in the roots when compared to leaves. LysoTracker(®) red marker, utilized to observe autophagosomes, revealed that autophagy is constitutively active in Triticum dicoccoides. Moreover, autophagy was determined to be induced in plants exposed to osmotic stress when compared to plants grown under normal conditions. Functional studies were executed in yeast to confirm that the TdATG8 protein is functional, and showed that the TdAtg8 gene complements the atg8∆::kan MX yeast mutant strain grown under nitrogen deficiency. For further functional analysis, TdATG8 protein was expressed in yeast and analyzed using Western immunoblotting. Atg8-silenced plants were exposed to drought stress and chlorophyll and malondialdehyde (MDA) content measurements demonstrated that Atg8 plays a key role on drought stress tolerance. In addition, Atg8-silenced plants exposed to osmotic stress were found to have decreased Atg8 expression level in comparison to controls. Hence, Atg8 is a positive regulator in osmotic and drought stress response
    corecore