237 research outputs found
The Poisson bracket compatible with the classical reflection equation algebra
We introduce a family of compatible Poisson brackets on the space of polynomial matrices, which contains the reflection equation algebra bracket.
Then we use it to derive a multi-Hamiltonian structure for a set of integrable
systems that includes the Heisenberg magnet with boundary conditions, the
generalized Toda lattices and the Kowalevski top.Comment: 13 pages, LaTeX with AmsFont
Quadrics on complex Riemannian spaces of constant curvature, separation of variables, and the Gaudin magnet
Integrable systems that are connected with orthogonal separation of variables in complex Riemannian spaces of constant curvature are considered herein. An isomorphism with the hyperbolic Gaudin magnet, previously pointed out by one of the authors, extends to coordinates of this type. The complete classification of these separable coordinate systems is provided by means of the corresponding L matrices for the Gaudin magnet. The limiting procedures (or calculus) which relate various degenerate orthogonal coordinate systems play a crucial role in the classification of all such systems
Noncompact SL(2,R) spin chain
We consider the integrable spin chain model - the noncompact SL(2,R) spin
magnet. The spin operators are realized as the generators of the unitary
principal series representation of the SL(2,R) group. In an explicit form, we
construct R-matrix, the Baxter Q-operator and the transition kernel to the
representation of the Separated Variables (SoV). The expressions for the energy
and quasimomentum of the eigenstates in terms of the Baxter Q-operator are
derived. The analytic properties of the eigenvalues of the Baxter operator as a
function of the spectral parameter are established. Applying the diagrammatic
approach, we calculate Sklyanin's integration measure in the separated
variables and obtain the solution to the spectral problem for the model in
terms of the eigenvalues of the Q-operator. We show that the transition kernel
to the SoV representation is factorized into a product of certain operators
each depending on a single separated variable.Comment: 29 pages, 12 figure
Baxter Q-operator and Separation of Variables for the open SL(2,R) spin chain
We construct the Baxter Q-operator and the representation of the Separated
Variables (SoV) for the homogeneous open SL(2,R) spin chain. Applying the
diagrammatical approach, we calculate Sklyanin's integration measure in the
separated variables and obtain the solution to the spectral problem for the
model in terms of the eigenvalues of the Q-operator. We show that the
transition kernel to the SoV representation is factorized into the product of
certain operators each depending on a single separated variable. As a
consequence, it has a universal pyramid-like form that has been already
observed for various quantum integrable models such as periodic Toda chain,
closed SL(2,R) and SL(2,C) spin chains.Comment: 29 pages, 9 figures, Latex styl
Linear -Matrix Algebra for Systems Separable\\ in Parabolic Coordinates
We consider a hierarchy of many particle systems on the line with polynomial
potentials separable in parabolic coordinates. Using the Lax representation,
written in terms of matrices for the whole hierarchy, we construct
the associated linear -matrix algebra with the -matrix dependent on the
dynamical variables. A dynamical Yang-Baxter equation is discussed.Comment: 10 pages, LaTeX. Submitted to Phys.Lett.
An integrable discretization of the rational su(2) Gaudin model and related systems
The first part of the present paper is devoted to a systematic construction
of continuous-time finite-dimensional integrable systems arising from the
rational su(2) Gaudin model through certain contraction procedures. In the
second part, we derive an explicit integrable Poisson map discretizing a
particular Hamiltonian flow of the rational su(2) Gaudin model. Then, the
contraction procedures enable us to construct explicit integrable
discretizations of the continuous systems derived in the first part of the
paper.Comment: 26 pages, 5 figure
Explicit solution of the (quantum) elliptic Calogero-Sutherland model
We derive explicit formulas for the eigenfunctions and eigenvalues of the
elliptic Calogero-Sutherland model as infinite series, to all orders and for
arbitrary particle numbers and coupling parameters. The eigenfunctions obtained
provide an elliptic deformation of the Jack polynomials. We prove in certain
special cases that these series have a finite radius of convergence in the nome
of the elliptic functions, including the two particle (= Lam\'e) case for
non-integer coupling parameters.Comment: v1: 17 pages. The solution is given as series in q but only to low
order. v2: 30 pages. Results significantly extended. v3: 35 pages. Paper
completely revised: the results of v1 and v2 are extended to all order
Separation of variables for the quantum SL(2,R) spin chain
We construct representation of the Separated Variables (SoV) for the quantum
SL(2,R) Heisenberg closed spin chain and obtain the integral representation for
the eigenfunctions of the model. We calculate explicitly the Sklyanin measure
defining the scalar product in the SoV representation and demonstrate that the
language of Feynman diagrams is extremely useful in establishing various
properties of the model. The kernel of the unitary transformation to the SoV
representation is described by the same "pyramid diagram" as appeared before in
the SoV representation for the SL(2,C) spin magnet. We argue that this kernel
is given by the product of the Baxter Q-operators projected onto a special
reference state.Comment: 26 pages, Latex style, 9 figures. References corrected, minor
stylistic changes, version to be publishe
Stochastic B\"acklund transformations
How does one introduce randomness into a classical dynamical system in order
to produce something which is related to the `corresponding' quantum system? We
consider this question from a probabilistic point of view, in the context of
some integrable Hamiltonian systems
Electric field gradients in MgB synthesized at high pressure: Cd TDPAC study and ab initio calculation
We report the high-pressure synthesis of novel superconductor MgB and
some related compounds. The superconducting transition temperature of our
samples of MgB is equal to 36.6 K. The MgB lattice parameters
determined via X-ray diffraction are in excellent agreement with results of our
ab initio calculations. The time-differential perturbed angular correlation
(TDPAC) experiments demonstrate a small increase in quadrupole frequency of
Cd probe with decreasing temperature from 293 to 4.2 K. The electric
field gradient (EFG) at the B site calculated from first principles is in fair
agreement with EFG obtained from B NMR spectra of MgB reported in the
literature. It is also very close to EFG found in our Cd TDPAC
measurements, which suggests that the Cd probe substitutes for boron in
the MgB lattice.Comment: 10 pages, 3 figure
- âŠ