4,216 research outputs found

    Axial, induced pseudoscalar, and pion-nucleon form factors in manifestly Lorentz-invariant chiral perturbation theory

    Get PDF
    We calculate the nucleon form factors G_A and G_P of the isovector axial-vector current and the pion-nucleon form factor G_piN in manifestly Lorentz-invariant baryon chiral perturbation theory up to and including order O(p^4). In addition to the standard treatment including the nucleon and pions, we also consider the axial-vector meson a_1 as an explicit degree of freedom. This is achieved by using the reformulated infrared renormalization scheme. We find that the inclusion of the axial-vector meson effectively results in one additional low-energy coupling constant that we determine by a fit to the data for G_A. The inclusion of the axial-vector meson results in an improved description of the experimental data for G_A, while the contribution to G_P is small.Comment: 21 pages, 9 figures, REVTeX

    Superheavy dark matter and ultrahigh energy cosmic rays

    Full text link
    The phase of inflationary expansion in the early universe produces superheavy relics in a mass window between 10^{12} GeV and 10^{14} GeV. Decay or annihilation of these superheavy relics can explain the observed ultrahigh energy cosmic rays beyond the Greisen-Zatsepin-Kuzmin cutoff. We emphasize that the pattern of cosmic ray arrival directions with energies beyond 20 EeV will decide between the different proposals for the origin of ultrahigh energy cosmic rays.Comment: Based on an invited talk given by RD at Theory Canada 1, Vancouver, June 2-5, 200

    Comments on ``A note on first-order formalism and odd-derivative actions'' by S. Deser

    Full text link
    We argue that the obstacles to having a first-order formalism for odd-derivative actions presented in a pedagogical note by Deser are based on examples which are not first-order forms of the original actions. The general derivation of an equivalent first-order form of the original second-order action is illustrated using the example of topologically massive electrodynamics (TME). The correct first-order formulations of the TME model keep intact the gauge invariance presented in its second-order form demonstrating that the gauge invariance is not lost in the Ostrogradsky process.Comment: 6 pages, references are adde

    Dynamics of the magnetic flux trapped in fractal clusters of normal phase in a superconductor

    Full text link
    The influence of geometry and morphology of superconducting structure on critical currents and magnetic flux trapping in percolative type-II superconductor is considered. The superconductor contains the clusters of a normal phase, which act as pinning centers. It is found that such clusters have significant fractal properties. The main features of these clusters are studied in detail: the cluster statistics is analyzed; the fractal dimension of their boundary is estimated; the distribution of critical currents is obtained, and its peculiarities are explored. It is examined thoroughly how the finite resolution capacity of the cluster geometrical size measurement affects the estimated value of fractal dimension. The effect of fractal properties of the normal phase clusters on the electric field arising from magnetic flux motion is investigated in the case of an exponential distribution of cluster areas. The voltage-current characteristics of superconductors in the resistive state for an arbitrary fractal dimension are obtained. It is revealed that the fractality of the boundaries of the normal phase clusters intensifies the magnetic flux trapping and thereby raises the critical current of a superconductor.Comment: revtex, 16 pages with 1 table and 5 figures; text and figures are improved; more detailed version with geometric probability analisys of the distribution of entry points into weak links over the perimeter of a normal phase clusters and one additional figure is published in Phys.Rev.B; alternative e-mail of author is [email protected]

    Resistive state of superconducting structures with fractal clusters of a normal phase

    Full text link
    The effect of morphologic factors on magnetic flux dynamics and critical currents in percolative superconducting structures is considered. The superconductor contains the fractal clusters of a normal phase, which act as pinning centers. The properties of these clusters are analyzed in the general case of gamma-distribution of their areas. The statistical characteristics of the normal phase clusters are studied, the critical current distribution is derived, and the dependencies of the main statistical parameters on the fractal dimension are found. The effect of fractal clusters of a normal phase on the electric field induced by the motion of the magnetic flux after the vortices have been broken away from pinning centers is considered. The voltage-current characteristics of fractal superconducting structures in a resistive state for an arbitrary fractal dimension are obtained. It is found that the fractality of the boundaries of normal phase clusters intensifies magnetic flux trapping and thereby increases the current-carrying capability of the superconductor.Comment: 15 pages with 8 figures, revtex3, alternative e-mail of author is [email protected]

    The LHC Dipole Geometry as Built in Industry

    Get PDF
    The LHC dipoles magnets are produced in 5 industrial production sites in Europe. The production is well underway and more than half of the total quantity has been delivered to CERN. One of the important characteristics of the dipole magnets is their geometry. To achieve the requested mechanical tolerances on the magnets, which are 15 m long and have a 28 t mass, the final assembly operations includes precise optical measurements. To ensure the good quality and high production rate, the final assembly procedure has been automated as much as possible. The authors report here about the assembly procedure, the features of the software that guides the optical measurements (and consequently the assembly operations) and the results obtained on the geometry in the different sites

    Two-dimensional metric and tetrad gravities as constrained second order systems

    Get PDF
    Using the Gitman-Lyakhovich-Tyutin generalization of the Ostrogradsky method for analyzing singular systems, we consider the Hamiltonian formulation of metric and tetrad gravities in two-dimensional Riemannian spacetime treating them as constrained higher-derivative theories. The algebraic structure of the Poisson brackets of the constraints and the corresponding gauge transformations are investigated in both cases.Comment: replaced with revised version published in Mod.Phys.Lett.A22:17-28,200

    High Energy Neutrinos From Superheavy Dark Matter Annihilation

    Get PDF
    Superheavy (M>1010M>10^{10} GeV) particles produced during inflation may be the dark matter, independent of their interaction strength. Strongly interacting superheavy particles will be captured by the sun, and their annihilation in the center of the sun will produce a flux of energetic neutrinos that should be detectable by neutrino telescopes. Depending on the particle mass, event rates in a cubic-kilometer detector range from several per hour to several per year. The signature of the process is a predominance of tau neutrinos, with a relatively flat energy spectrum of events ranging from 50 GeV to many TeV, and with the mean energy of detected tau neutrinos about 3 TeV.Comment: 24 pages, 7 figure
    • …
    corecore