17 research outputs found

    Modeling the damming effect of pile foundations (Tomsk city)

    Get PDF
    The authors have considered the impact of pile foundations on the structure of filtration flows in the conditions of urban development. Hydrodynamic simulation methods have shown that a groundwater level rise might occur due to the damming effect that can be created by pile fields in semipermeable rocks. This phenomenon can intensify anthropogenic waterlogging processes in urbanized territories

    Hydrogeological condition patterns of Kuznetsk Basin coalbed methane fields for estimating hydrodynamic calculations

    Get PDF
    The paper describes the natural regional conditions and key formation factors of groundwater dynamics. Characteristic hydrogeological structure elements for Kuznetsk Basin coal were identified providing parameter-oriented hydrodynamic calculations and hydrogeological models in predicting coalbed methane mining impact on the regional groundwater

    Modeling of changing hydrogeological conditions during construction of pier foundations on the Kama river bank

    Get PDF
    The article presents the results of hydrogeological studies carried out within the area of the Kama river bank in Perm city. It proposes the hydrodynamic model by means of which a number of forecasting issues have been addressed. The possible scenarios of changes in filtration flow, i.e. water rise before the obstacle and water drop behind the obstacle due to groundwater filtration blockage, have been described [2]. The allowable changes of hydrodynamic conditions within the study area have been outlined

    Hydrogeological conditions of potable water supply the Kuznetsk Coal Basin, Russia

    Get PDF
    The article deals with hydrogeological conditions of the groundwater resources in the western part of the Kuznetsk depression, a coal and ore mining region. On the basis of a scheme of hydrogeological boundary conditions, a numerical geologic filtration model is developed for calculation of groundwater resources in the study area. The hydrologic budget of the numerical model is evaluated for assessment of infiltration recharge of groundwater resources

    The HydroGeo Software Package and Its Usage

    Get PDF
    This article presents experience of development and application of the HydroGeo software package used to handle practical and scientific tasks in the field of hydrogeochemistry and hydrogeology. There are examples of its application and basic scientific and practical results

    Assessment of fresh groundwater vulnerability to contamination caused by production operations in oil and gas fields of Nizhnevartovsk Region (Western Siberia)

    Get PDF
    Groundwater quality is possible to provide under the condition of aquifers effective protection from surface contamination and bottom pollution prevention in the areas of intense oil-gas production operations. Qualitative and quantitative assessment of groundwater vulnerability is based on regional characteristics of lithological composition and thickness of impermeable deposits in unsaturated zone and overlying deposits. The correlation of head and water table levels, absorption capacity of soils and clay rocks are also considered. An integrated approach to natural vulnerability analysis of groundwater has been presented. It suggests a combination of three most common methods. Based on performed calculations, the map has been made to plot fresh groundwater vulnerability of Atlym-Novomikhailovsk aquifer system (Nizhnevaryovsk Region, Khanty-Mansiysk Autonomus Okrug)

    Hydrogeological Conditions Changes of Tomsk, Russia

    Get PDF
    The hydro-geological conditions of Tomsk are determined by both natural factors and the impact of the urban infrastructure. Important impact on subsurface water flows involves the complex hydraulic relationship of several geological layers and the ancient and modern relief. Increasing groundwater abstraction has generally led to lowered piezometric heads in the deeper aquifer horizons, while in the uppermost horizons, rises in the water table and formation of new perched water tables are experienced due to leaking pipes and impedance of groundwater flow by deep foundations. In this paper special attention is paid to the Quaternary aquifer complex. Barrage effects of pile foundations and the intensive development of perched water distributed on flat surfaces of the watersheds and high terraces, complicated conditions for the construction and operation of facilities, leading in some cases to emergency situations

    Hydrogenous mineral neoformations in Tomsk water intake facility from underground sources

    Get PDF
    The article considers study outcomes of hydrogenous mineral neoformations precipitated on deferrization filters of Tomsk water intake facility from underground sources. Compositionally, these precipitations are colloform and polymineral including ferrous, carbonate and aluminosilicate mineral phases. Ferrous phase predominates and embraces ferric hydroxides (ferrihydrate, goethite, hematite and lepidocrocite) and ferrous hydrophosphates (vivianite, strengite, strunzite and rockbridgeit). Carbonate and aluminosilicate minerals are calcite and kaolinite-group, respectively

    Water inflow into mine under the influence of external boundary conditions at coal deposit exploitation (Kuzbass)

    No full text
    Relevance. Safety and efficiency of coal deposit development depends directly on natural hydrogeological conditions and their changes under the influence of mining deposits in various ways. Particularly significant and sudden complications can arise with high water cut of rocks, a sharp change in their filtration properties under the influence of mining operations or changes in supply of aquifer complexes. Multidirectional factors of water inflow of coal deposits determine the need to identify and analyze the leading factors in formation of water inflows into underground mines. The aim of the study is to analyze natural factors effecting the change in the magnitude of water inflows in mining solid minerals by the underground method using the example of coal mines in the central part of Kuzbass; study the hydrogeological conditions of coal deposits, using a similar method; identify regularities and group the leading factors in formation of water inflows into underground mining. Methodology. To study the magnitude of possible meteorological changes, the material was provided by specialized electronic databases, both monthly averages and urgent observations of air temperature and the amount of atmospheric precipitation. Information array processed by the weather station in Kedrovka (Kemerovo) for 1955 to 2015 was obtained from the All-Russian Scientific Research Institute of Hydrometeorological Information - World Data Center (VNIIGMI-WDC), literature sources and stock materials. The materials provided by the «Zarechnaya» LLC «Georesurs» Ltd., as well as the data on water inflows in Alexeyevskaya mine and 7 Noyabrya mine were used as the initial data on water inflows and filtration properties of rocks for monitoring geological environment on the fields. Processing meteorological parameters to identify their patterns is based on the use of statistical methods of data processing. The results are visualized using Microsoft Word, Exel, Surfer, AutoCad. Results. The authors have revealed the factors that have the greatest influence on formation of water inflow into the mine workings, and carried out the analysis of the change in climatic characteristics by the temporary statistical methods on randomness and presence of a trend using the Pitmen criterion and the inversion criterion, respectively. Based on the results of the research, a conceptual model of formation of water inflows into mining is constructed

    Modeling hydrogeological conditions for antilandslide measures justification on the plot of the Kama river embankment in Perm

    No full text
    The topic is relevant due to the necessity of forecast ways improvement and protection of the territories against flooding and the accompanying processes. Civil construction, urban density, underground utility system, change of a natural relief cardinally changes the natural geological environment within the developed territory. New layers of industrial temporary waters are developed under several factors (building development, rocks contraction under the stress of construction engineering facilities). The objective of the present research is to study geological, hydrogeological and hydrodynamic conditions for a long-term change forecast for construction of additional retaining walls along the Kama river embankment and short-term change forecast - for high water. Research technique. Basic data for the research are the field materials of JSC Sibgiprotransput received in 2013-2014 with the direct involvement of Darya V. Purgina in engineering-geological and hydrogeological conditions studying at all stages of the research. In the course of the work 66 wells are drilled (including four horizontal and two inclined wells), 20 holes are trenched, more than 600 samples are selected. Static and dynamic penetration test, rotational shear soils testing, static plate load test were used in field soil investigation. Two cluster and five single pumping tests were carried out for reliable estimation of filtration characteristics. The hydrogeological survey was completed, more than 50 observation points were described. The full complex of rock mechanics is carried out in laboratory setting. For the soils, lying above the groundwater level, the filtration coefficient is defined by standard consolidation. The main method of an assessment of influence of new retaining walls or changes of conditions of groundwater recharge was a numerical modeling with the use of the decisive module realizing the algorithm of the solution of the differential equation of a non-standard planned filtration according to the method of final differences [1]. As preprocessors the Surfer and AutoCad software systems were applied. The results. Hydrogeological and hydrodynamic conditions of a research site are studied in detail, the hydrodynamic numerical model is created, the forecast of underground water levels change at surface water level rise at high-water season is made, predictive map of flooding area is built, groundwater backwater in the existing wall is investigated, the possibility of a barrage effect in the construction of new retaining walls is assessed, recommendations for optimal penetration of the pile grillage on the area are given
    corecore