90 research outputs found
Two-Photon Doppler cooling of alkaline-earth-metal and ytterbium atoms
A new possibility of laser cooling of alkaline-earth-metal and Ytterbium
atoms using a two-photon transition is analyzed. We consider a -
transition, with excitation in near resonance with the
level. This greatly increases the two-photon transition rate, allowing an
effective transfer of momentum. The experimental implementation of this
technique is discussed and we show that for Calcium, for example, two-photon
cooling can be used to achieve a Doppler limit of 123 microKelvin. The
efficiency of this cooling scheme and the main loss mechanisms are analyzed.Comment: 7 pages, 5 figure
Paramagnetic Faraday rotation with spin-polarized ytterbium atoms
We report observation of the paramagnetic Faraday rotation of spin-polarized
ytterbium (Yb) atoms. As the atomic samples, we used an atomic beam, released
atoms from a magneto-optical trap (MOT), and trapped atoms in a
far-off-resonant trap (FORT). Since Yb is diamagnetic and includes a spin-1/2
isotope, it is an ideal sample for the spin physics, such as quantum
non-demolition measurement of spin (spin QND), for example. From the results of
the rotation angle, we confirmed that the atoms were almost perfectly
polarized.Comment: 8 pages, 20 figure
Active laser frequency stabilization using neutral praseodymium (Pr)
We present a new possibility for the active frequency stabilization of a
laser using transitions in neutral praseodymium. Because of its five outer
electrons, this element shows a high density of energy levels leading to an
extremely line-rich excitation spectrum with more than 25000 known spectral
lines ranging from the UV to the infrared. We demonstrate the active frequency
stabilization of a diode laser on several praseodymium lines between 1105 and
1123 nm. The excitation signals were recorded in a hollow cathode lamp and
observed via laser-induced fluorescence. These signals are strong enough to
lock the diode laser onto most of the lines by using standard laser locking
techniques. In this way, the frequency drifts of the unlocked laser of more
than 30 MHz/h were eliminated and the laser frequency stabilized to within
1.4(1) MHz for averaging times >0.2 s. Frequency quadrupling the stabilized
diode laser can produce frequency-stable UV-light in the range from 276 to 281
nm. In particular, using a strong hyperfine component of the praseodymium
excitation line E = 16 502.616_7/2 cm^-1 -> E' = 25 442.742_9/2 cm^-1 at lambda
= 1118.5397(4) nm makes it possible - after frequency quadruplication - to
produce laser radiation at lambda/4 = 279.6349(1) nm, which can be used to
excite the D2 line in Mg^+.Comment: 10 pages, 14 figure
Multicomponent Bright Solitons in F = 2 Spinor Bose-Einstein Condensates
We study soliton solutions for the Gross--Pitaevskii equation of the spinor
Bose--Einstein condensates with hyperfine spin F=2 in one-dimension. Analyses
are made in two ways: by assuming single-mode amplitudes and by generalizing
Hirota's direct method for multi-components. We obtain one-solitons of
single-peak type in the ferromagnetic, polar and cyclic states, respectively.
Moreover, twin-peak type solitons both in the ferromagnetic and the polar state
are found.Comment: 15 pages, 8 figure
Interplay of Mott Transition and Ferromagnetism in the Orbitally Degenerate Hubbard Model
A slave boson representation for the degenerate Hubbard model is introduced.
The location of the metal to insulator transition that occurs at commensurate
densities is shown to depend weakly on the band degeneracy M. The relative
weights of the Hubbard sub-bands depend strongly on M, as well as the magnetic
properties. It is also shown that a sizable Hund's rule coupling is required in
order to have a ferromagnetic instability appearing. The metal to insulator
transition driven by an increase in temperature is a strong function of it.Comment: 5 pages, revtex, 5 postscript figures, submitted to Phys. Rev.
Stabilization and pumping of giant vortices in dilute Bose-Einstein condensates
Recently, it was shown that giant vortices with arbitrarily large quantum
numbers can possibly be created in dilute Bose-Einstein condensates by
cyclically pumping vorticity into the condensate. However, multiply quantized
vortices are typically dynamically unstable in harmonically trapped nonrotated
condensates, which poses a serious challenge to the vortex pump procedure. In
this theoretical study, we investigate how the giant vortices can be stabilized
by the application of a Gaussian potential peak along the vortex core. We find
that achieving dynamical stability is feasible up to high quantum numbers. To
demonstrate the efficiency of the stabilization method, we simulate the
adiabatic creation of an unsplit 20-quantum vortex with the vortex pump.Comment: 8 pages, 6 figures; to be published in J. Low Temp. Phys., online
publication available at http://dx.doi.org/10.1007/s10909-010-0216-
Electronic Structure and Phase Transition in V2O3: Importance of 3d Spin-Orbit Interaction and Lattice Distortion
The 3d electronic structure and phase transition in pure and Cr doped V2O3
are theoretically investigated in relation to the 3d spin-orbit interaction and
lattice distortion. A model consisting of the nearest-neighbor V ion pair with
full degeneracy of the 3d orbitals is studied within the many-body point of
view. It is shown that each V ion with S=1 spin state has a large orbital
magnetic moment and no orbital ordering occurs in the
antiferromagnetic insulating (AFI) phase. The anomalous resonant Bragg
reflection found in the AFI phase is attributed to the magnetic ordering. In
the AFI and paramagnetic insulating (PI) phases, Jahn-Teller like lattice
instability leads to tilting of the V ion pairs from the corundum c-axis and
this causes large difference in the orbital occupation between the paramagnetic
metal and the insulating phases, which is consistent with linear dichroic V 2p
XAS measurements.
To understand the AFI to PI transition, a model spin Hamiltonian is also
proposed. The transition is found to be simultaneous order-disorder transition
of the magnetic moments and tilting directions of the V ion pairs. Softening of
elastic constant C44 and abrupt change in short range spin correlations
observed at the transition are also explained.Comment: 18 pages, 16 figure
Reevaluation of the role of nuclear uncertainties in experiments on atomic parity violation with isotopic chains
In light of new data on neutron distributions from experiments with
antiprotonic atoms [ Trzcinska {\it et al.}, Phys. Rev. Lett. 87, 082501
(2001)], we reexamine the role of nuclear-structure uncertainties in the
interpretation of measurements of parity violation in atoms using chains of
isotopes of the same element. With these new nuclear data, we find an
improvement in the sensitivity of isotopic chain measurements to ``new
physics'' beyond the standard model. We compare possible constraints on ``new
physics'' with the most accurate to date single-isotope probe of parity
violation in the Cs atom. We conclude that presently isotopic chain experiments
employing atoms with nuclear charges Z < 50 may result in more accurate tests
of the weak interaction.Comment: 6 pages, 1 fig., submitted to Phys. Rev.
Coherent spinor dynamics in a spin-1 Bose condensate
Collisions in a thermal gas are perceived as random or incoherent as a
consequence of the large numbers of initial and final quantum states accessible
to the system. In a quantum gas, e.g. a Bose-Einstein condensate or a
degenerate Fermi gas, the phase space accessible to low energy collisions is so
restricted that collisions be-come coherent and reversible. Here, we report the
observation of coherent spin-changing collisions in a gas of spin-1 bosons.
Starting with condensates occupying two spin states, a condensate in the third
spin state is coherently and reversibly created by atomic collisions. The
observed dynamics are analogous to Josephson oscillations in weakly connected
superconductors and represent a type of matter-wave four-wave mixing. The
spin-dependent scattering length is determined from these oscillations to be
-1.45(18) Bohr. Finally, we demonstrate coherent control of the evolution of
the system by applying differential phase shifts to the spin states using
magnetic fields.Comment: 19 pages, 3 figure
Calculations of collisions between cold alkaline earth atoms in a weak laser field
We calculate the light-induced collisional loss of laser-cooled and trapped
magnesium atoms for detunings up to 50 atomic linewidths to the red of the
^1S_0-^1P_1 cooling transition. We evaluate loss rate coefficients due to both
radiative and nonradiative state-changing mechanisms for temperatures at and
below the Doppler cooling temperature. We solve the Schrodinger equation with a
complex potential to represent spontaneous decay, but also give analytic models
for various limits. Vibrational structure due to molecular photoassociation is
present in the trap loss spectrum. Relatively broad structure due to absorption
to the Mg_2 ^1Sigma_u state occurs for detunings larger than about 10 atomic
linewidths. Much sharper structure, especially evident at low temperature,
occurs even at smaller detunings due to of Mg_2 ^1Pi_g absorption, which is
weakly allowed due to relativistic retardation corrections to the forbidden
dipole transition strength. We also perform model studies for the other
alkaline earth species Ca, Sr, and Ba and for Yb, and find similar qualitative
behavior as for Mg.Comment: 20 pages, RevTex, 13 eps figures embedde
- …