58 research outputs found

    The origins of estrogen receptor alpha-positive and estrogen receptor alpha-negative human breast cancer

    Get PDF
    Current hormonal therapies have benefited millions of patients with breast cancer. Their success, however, is often temporary and limited to a subset of patients whose tumors express estrogen receptor alpha (ER). The therapies are entirely ineffective in ER-negative disease. Recent studies suggest that there are many biological pathways and alterations involved in determining whether ER is expressed and how it is regulated during breast cancer evolution. Improving hormonal therapies, in addition to perfecting current strategies, will also target these newly discovered pathways and alterations, and others yet to be found. The present commentary will briefly highlight a few important observations and unanswered questions regarding ER status and growth regulation during breast cancer evolution, which hopefully will help to stimulate new thinking and progress in this important area of medial research

    Are ipsilateral breast tumour invasive recurrences in young (⩽40 years) women more aggressive than their primary tumours?

    Get PDF
    The characteristics of ipsilateral breast tumour recurrences (IBTRs) relative to those of their primary tumours (PTs) remain scarcely studied. Of 70 young (⩽40 years) premenopausal women with IBTRs, we studied a series of 63 with paired histological data. Median follow-up since IBTR was 10 years. Rates of histological types, grades or hormonal receptors were not significantly different in PTs and in IBTRs. The concordance between IBTRs and their PTs was good for histological types. IBTRs with conserved histological types tended to occur more locally, but not significantly sooner than others. These IBTRs had good concordance for hormone receptors. In discordant cases there were as many losses as appearances of the receptors. The concordance was weak for grades, with equivalent numbers of IBTRs graded lower as higher than their PTs. The 10-year overall survival rate was 70%. Neither the conservation of histological type, location, nor of the two combined were associated with deaths. Early (<2 years) IBTRs, tended to be associated with poorer survival (HR=2.24 (0.92–5.41); P=0.08). IBTRs did not display features of higher aggressiveness than PTs. Neither clinical nor histological definition of a true recurrence could be established other than the conservation of the histological type

    Overexpression of c-erbB2 is an independent marker of resistance to endocrine therapy in advanced breast cancer

    Get PDF
    The present study investigated the interaction between c-erbB2 overexpression and the response to first-line endocrine therapy in patients with advanced breast cancer. The primary tumours of 241 patients who were treated at first relapse with endocrine therapy were assessed for overexpression of c-erbB2 by immunohistochemistry. c-erbB2 was overexpressed in 76 (32%) of primary breast cancers and did not correlate with any other prognostic factor. The overall response to treatment and time to progression were significantly lower in patients with c-erbB2-positive tumours compared to those that were c-erbB2-negative (38% vs 56%, P = 0.02; and 4.1 months vs 8.7 months, P < 0.001, respectively). In multivariate analysis, c-erbB2 status was the most significant predictive factor for a short time to progression (P = 0.0009). In patients with ER-positive primary tumours treated at relapse with tamoxifen (n = 170), overexpression of c-erbB2 was associated with a significantly shorter time to progression (5.5 months vs 11.2 months, P < 0.001). In conclusion, overexpression of c-erbB2 in the primary tumour is an independent marker of relative resistance to first-line endocrine therapy in patients with advanced breast cancer. In patients with ER-positive primary tumours, the overexpression of c-erbB2 defines a subgroup less likely to respond to endocrine therapy. © 1999 Cancer Research Campaig

    Expression of ALDH1 in axillary lymph node metastases is a prognostic factor of poor clinical outcome in breast cancer patients with 1–3 lymph node metastases

    Get PDF
    Background Recently, evidence in support of the cancer stem cell (CSC) hypothesis has been accumulating. On the other hand, it has been reported that the expression of aldehyde dehydrogenase 1 (ALDH1) in primary breast cancer is a powerful predictor of a poor clinical outcome, and that breast cancer stem cells express ALDH1. According to the CSC hypothesis, development of metastases requires the dissemination of CSC that may remain dormant and be reactivated to cause tumor recurrence. In this study, we investigated whether the detection of CSC in axillary lymph node metastases (ALNM) might be a significant prognostic factor in patients with breast cancer. Methods From 1998 to 2006, 40 primary breast cancer patients with ALNM, the number of metastatic nodes varying in number from 1 to 3, underwent surgery at Okayama University; of these, 15 patients developed tumor recurrence. We retrospectively evaluated the common clinicopathological features and the expression of ER, HER2, ALDH1, and Ki67 in both the primary lesions and the ALNM, and analyzed the correlations between the expression of these biological markers and the disease-free survival (DFS). Results Expression of ALDH1 in the ALNM was significantly associated with the DFS (P = 0.037). Conclusion Evaluation of biomarker expression in ALNM could be useful for prognosis in breast cancer patients with 1–3 metastatic lymph nodes

    Mutant p53 drives multinucleation and invasion through a process that is suppressed by ANKRD11

    Get PDF
    Mutations of p53 in cancer can result in a gain of function associated with tumour progression and metastasis. We show that inducible expression of several p53 ‘hotspot’ mutants promote a range of centrosome abnormalities, including centrosome amplification, increased centrosome size and loss of cohesion, which lead to mitotic defects and multinucleation. These mutant p53-expressing cells also show a change in morphology and enhanced invasive capabilities. Consequently, we sought for a means to specifically target the function of mutant p53 in cancer cells. This study has identified ANKRD11 as a key regulator of the oncogenic potential of mutant p53. Loss of ANKRD11 expression with p53 mutation defines breast cancer patients with poor prognosis. ANKRD11 alleviates the mitotic defects driven by mutant p53 and suppresses mutant p53-mediated mesenchymal-like transformation and invasion. Mechanistically, we show that ANKRD11 restores a native conformation to the mutant p53 protein and causes dissociation of the mutant p53–p63 complex. This represents the first evidence of an endogenous protein with the capacity to suppress the oncogenic properties of mutant p53.JE Noll, J Jeffery, F Al-Ejeh, R Kumar, KK Khanna, DF Callen and PM Neilse
    corecore