955 research outputs found

    Nonlinear dynamics of mode-locking optical fiber ring lasers

    Get PDF
    We consider a model of a mode-locked fiber ring laser for which the evolution of a propagating pulse in a birefringent optical fiber is periodically perturbed by rotation of the polarization state owing to the presence of a passive polarizer. The stable modes of operation of this laser that correspond to pulse trains with uniform amplitudes are fully classified. Four parameters, i.e., polarization, phase, amplitude, and chirp, are essential for an understanding of the resultant pulse-train uniformity. A reduced set of four coupled nonlinear differential equations that describe the leading-order pulse dynamics is found by use of the variational nature of the governing equations. Pulse-train uniformity is achieved in three parameter regimes in which the amplitude and the chirp decouple from the polarization and the phase. Alignment of the polarizer either near the slow or the fast axis of the fiber is sufficient to establish this stable mode locking

    GSFC short pulse radar, JONSWAP-75

    Get PDF
    In September 1975, the Goddard Space Flight Center operated a short pulse radar during ocean wave measuring experiments off the coast of West Germany in the North Sea. The experiment was part of JONSWAP-75. The radar system and operations during the experiment are described along with examples of data

    Preventing Neurodegenerative Memory Loss in Hopfield Neuronal Networks Using Cerebral Organoids or External Microelectronics

    Get PDF
    Developing technologies have made significant progress towards linking the brain with brain-machine interfaces (BMIs) which have the potential to aid damaged brains to perform their original motor and cognitive functions. We consider the viability of such devices for mitigating the deleterious effects of memory loss that is induced by neurodegenerative diseases and/or traumatic brain injury (TBI). Our computational study considers the widely used Hopfield network, an autoassociative memory model in which neurons converge to a stable state pattern after receiving an input resembling the given memory. In this study, we connect an auxiliary network of neurons, which models the BMI device, to the original Hopfield network and train it to converge to its own auxiliary memory patterns. Injuries to the original Hopfield memory network, induced through neurodegeneration, for instance, can then be analyzed with the goal of evaluating the ability of the BMI to aid in memory retrieval tasks. Dense connectivity between the auxiliary and Hopfield networks is shown to promote robustness of memory retrieval tasks for both optimal and nonoptimal memory sets. Our computations estimate damage levels and parameter ranges for which full or partial memory recovery is achievable, providing a starting point for novel therapeutic strategies

    Atomic Interactions in Precision Interferometry Using Bose-Einstein Condensates

    Full text link
    We present theoretical tools for predicting and reducing the effects of atomic interactions in Bose-Einstein condensate (BEC) interferometry experiments. To address mean-field shifts during free propagation, we derive a robust scaling solution that reduces the three-dimensional Gross-Pitaevskii equation to a set of three simple differential equations valid for any interaction strength. To model the other common components of a BEC interferometer---condensate splitting, manipulation, and recombination---we generalize the slowly-varying envelope reduction, providing both analytic handles and dramatically improved simulations. Applying these tools to a BEC interferometer to measure the fine structure constant (Gupta, et al., 2002), we find agreement with the results of the original experiment and demonstrate that atomic interactions do not preclude measurement to better than part-per-billion accuracy, even for atomic species with relatively large scattering lengths. These tools help make BEC interferometry a viable choice for a broad class of precision measurements.Comment: 8 pages, 6 figures, revised based on reviewer comment

    Design study of Software-Implemented Fault-Tolerance (SIFT) computer

    Get PDF
    Software-implemented fault tolerant (SIFT) computer design for commercial aviation is reported. A SIFT design concept is addressed. Alternate strategies for physical implementation are considered. Hardware and software design correctness is addressed. System modeling and effectiveness evaluation are considered from a fault-tolerant point of view
    • …
    corecore