73 research outputs found

    Out-of-equilibrium charge redistribution in a copper-oxide based superconductor by time-resolved X-ray photoelectron spectroscopy

    Full text link
    Charge-transfer excitations are of paramount importance for understanding the electronic structure of copper-oxide based high-temperature superconductors. In this study, we investigate the response of a Bi2_2Sr2_2CaCu2_2O8+δ_{\mathrm{8}+ \delta} crystal to the charge redistribution induced by an infrared ultrashort pulse. Element-selective time-resolved core-level photoelectron spectroscopy with a high energy resolution allows disentangling the dynamics of oxygen ions with different coordination and bonds thanks to their different chemical shifts. Our experiment shows that the O\,1s1s component arising from the Cu-O planes is significantly perturbed by the infrared light pulse. Conversely, the apical oxygen, also coordinated with Sr ions in the Sr-O planes, remains unaffected. This result highlights the peculiar behavior of the electronic structure of the Cu-O planes. It also unlocks the way to study the out-of-equilibrium electronic structure of copper-oxide-based high-temperature superconductors by identifying the O\,1s1s core-level emission originating from the oxygen ions in the Cu-O planes. This ability could be critical to gain information about the strongly-correlated electron ultrafast dynamical mechanisms in the Cu-O plane in the normal and superconducting phases

    Tracking the surface atomic motion in a coherent phonon oscillation

    Full text link
    X-ray photoelectron diffraction is a powerful tool for determining the structure of clean and adsorbate-covered surfaces. Extending the technique into the ultrafast time domain will open the door to studies as diverse as the direct determination of the electron-phonon coupling strength in solids and the mapping of atomic motion in surface chemical reactions. Here we demonstrate time-resolved photoelectron diffraction using ultrashort soft X-ray pulses from the free electron laser FLASH. We collect Se 3d photoelectron diffraction patterns over a wide angular range from optically excited Bi2_2Se3_3 with a time resolution of 140 fs. Combining these with multiple scattering simulations allows us to track the motion of near-surface atoms within the first 3 ps after triggering a coherent vibration of the A1g_{1g} optical phonons. Using a fluence of 4.2 mJ/cm2^2 from a 1.55 eV pump laser, we find the resulting coherent vibrational amplitude in the first two interlayer spacings to be on the order of 1 pm

    New insights into the laser-assisted photoelectric effect from solid-state surfaces

    Full text link
    Photoemission from a solid surface provides a wealth of information about the electronic structure of the surface and its dynamic evolution. Ultrafast pump-probe experiments are particularly useful to study the dynamic interactions of photons with surfaces as well as the ensuing electron dynamics induced by these interactions. Time-resolved laser-assisted photoemission (tr-LAPE) from surfaces is a novel technique to gain deeper understanding of the fundamentals underlying the photoemission process. Here, we present the results of a femtosecond time-resolved soft X-ray photoelectron spectroscopy experiment on two different metal surfaces conducted at the X-ray Free-Electron Laser FLASH in Hamburg. We study photoemission from the W 4f and Pt 4f core levels using ultrashort soft X-ray pulses in combination with synchronized infrared (IR) laser pulses. When both pulses overlap in time and space, laser-assisted photoemission results in the formation of a series of sidebands that reflect the dynamics of the laser-surface interaction. We demonstrate a qualitatively new level of sideband generation up to the sixth order and a surprising material dependence of the number of sidebands that has so far not been predicted by theory. We provide a semi-quantitative explanation of this phenomenon based on the different dynamic dielectric responses of the two materials. Our results advance the understanding of the LAPE process and reveal new details of the IR field present in the surface region, which is determined by the dynamic interplay between the IR laser field and the dielectric response of the metal surfaces.Comment: 18 pages, 3 figure

    Time- and momentum-resolved photoemission studies using time-of-flight momentum microscopy at a free-electron laser

    No full text
    Time-resolved photoemission with ultrafast pump and probe pulses is an emerging technique with wide application potential. Real-time recording of nonequilibrium electronic processes, transient states in chemical reactions, or the interplay of electronic and structural dynamics offers fascinating opportunities for future research. Combining valence-band and core-level spectroscopy with photoelectron diffraction for electronic, chemical, and structural analyses requires few 10 fs soft X-ray pulses with some 10 meV spectral resolution, which are currently available at high repetition rate free-electron lasers. We have constructed and optimized a versatile setup commissioned at FLASH/PG2 that combines free-electron laser capabilities together with a multidimensional recording scheme for photoemission studies. We use a full-field imaging momentum microscope with time-of-flight energy recording as the detector for mapping of 3D band structures in (kx, ky, E) parameter space with unprecedented efficiency. Our instrument can image full surface Brillouin zones with up to 7 Å−1 diameter in a binding-energy range of several eV, resolving about 2.5 × 105 data voxels simultaneously. Using the ultrafast excited state dynamics in the van der Waals semiconductor WSe2 measured at photon energies of 36.5 eV and 109.5 eV, we demonstrate an experimental energy resolution of 130 meV, a momentum resolution of 0.06 Å−1, and a system response function of 150 fs

    Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO2_2

    Full text link
    Altermagnets are an emerging third elementary class of magnets. Unlike ferromagnets, their distinct crystal symmetries inhibit magnetization while, unlike antiferromagnets, they promote strong spin polarization in the band structure. The corresponding unconventional mechanism of timereversal symmetry breaking without magnetization in the electronic spectra has been regarded as a primary signature of altermagnetism, but has not been experimentally visualized to date. We directly observe strong time-reversal symmetry breaking in the band structure of altermagnetic RuO2_2 by detecting magnetic circular dichroism in angle-resolved photoemission spectra. Our experimental results, supported by ab initio calculations, establish the microscopic electronic-structure basis for a family of novel phenomena and functionalities in fields ranging from topological matter to spintronics, that are based on the unconventional time-reversal symmetry breaking in altermagnets

    Spin texture of time reversal symmetry invariant surface states on W 110

    Get PDF
    We find in the case of W 110 previously overlooked anomalous surface states having their spin locked at right angle to their momentum using spin resolved momentum microscopy. In addition to the well known Dirac like surface state with Rashba spin texture near the point, we observe a tilted Dirac cone with circularly shaped cross section and a Dirac crossing at 0.28 amp; 8201; amp; 8201; amp; 8201; within the projected bulk band gap of tungsten. This state has eye catching similarities to the spin locked surface state of a topological insulator. The experiments are fortified by a one step photoemission calculation in its density matrix formulatio

    Suppression of the vacuum space-charge effect in fs-photoemission by a retarding electrostatic front lens

    Get PDF
    The performance of time-resolved photoemission experiments at fs-pulsed photon sources is ultimately limited by the e–e Coulomb interaction, downgrading energy and momentum resolution. Here, we present an approach to effectively suppress space-charge artifacts in momentum microscopes and photoemission microscopes. A retarding electrostatic field generated by a special objective lens repels slow electrons, retaining the k-image of the fast photoelectrons. The suppression of space-charge effects scales with the ratio of the photoelectron velocities of fast and slow electrons. Fields in the range from −20 to −1100 V/mm for Ekin = 100 eV to 4 keV direct secondaries and pump-induced slow electrons back to the sample surface. Ray tracing simulations reveal that this happens within the first 40 to 3 μm above the sample surface for Ekin = 100 eV to 4 keV. An optimized front-lens design allows switching between the conventional accelerating and the new retarding mode. Time-resolved experiments at Ekin = 107 eV using fs extreme ultraviolet probe pulses from the free-electron laser FLASH reveal that the width of the Fermi edge increases by just 30 meV at an incident pump fluence of 22 mJ/cm2 (retarding field −21 V/mm). For an accelerating field of +2 kV/mm and a pump fluence of only 5 mJ/cm2, it increases by 0.5 eV (pump wavelength 1030 nm). At the given conditions, the suppression mode permits increasing the slow-electron yield by three to four orders of magnitude. The feasibility of the method at high energies is demonstrated without a pump beam at Ekin = 3830 eV using hard x rays from the storage ring PETRA III. The approach opens up a previously inaccessible regime of pump fluences for photoemission experiments
    • …
    corecore