6 research outputs found
Investigation of structure and properties of bury barrier layers at low energy carbon and oxigen ions
There is actual investigation of the processes creating the buried barrier layers that prevent diffusion of high-temperature coating materials because of the development of ion and ion-plasma technologies, surface treatment of material.
In the present work we discuss the results on the thermal stability, structure, physical and mechanical properties of the buried barrier layers formed 2*1018 ion/sm2 , by ion implantation of oxygen and carbon (the dose the energy of 1.5 – 2 MeV) accelerator to the DC-60. Nuclear spectroscopic techniques involving X-ray analysis systematic studies of the influence of the buried barrier layer on the thermally induced processes in the layered system Fe-Be. It is established: the sequence of phase transitions in the surface layers and inside the sample during isothermal annealing. It is shown that the implanted oxygen ions buried barrier layer in the matrix of Fe slow mutual diffusion of beryllium atoms and iron atoms. The kinetics of the process of mutual diffusion of Fe and Be in a solution Fe (Be) for both multi-layered systems with a layer of implanted of oxygen and without it. The evolution of the distribution of the oxygen implanted layer in the copper and
the effect of thermal annealing. It is shown that even at an annealing temperature of ~ 200ºC in this system is the diffusion of oxygen into the sample of copper. Consequently, the oxygen cannot be used as a subsurface barrier layer in copper, in contrast to iron, where oxygen-implanted layer remains stable at much higher temperatures. The research phase formation in iron implanted with carbon and deposited on the surface layer of beryllium. It is established that the sample implanted with a layer of carbon formation on the surface Fe2 phase begins after 5 hours annealing at 650ºC. For the case without implantation – education phase not fixed.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2089
Investigation of the Characteristics of Materials with the Ruddlesden-Popper Structure for Solid Oxide Fuel Cells
This article presents the results of a study of the characteristics of materials based on lanthanum nickelate La2Ni1-xCoxO4+δ (0≤x≤0.3) and Pr2NiO4+δ. Their crystal structure and interaction with YSZ and GDC electrolyte materials at 900 °C are analyzed. The thermal expansion coefficients are determined and the temperature dependences of the conductivities are studied. The polarization resistance of these materials in contact with the electrolyte material YSZ is also measured. As a result of the study, the following cathode materials were investigated: La2Ni1-xCoxO4 (0≤ x ≤0.3), Pr2NiO4. In this case, the influence of low concentrations of Co on the characteristics of lanthanum nickelate was studied for the first time. Materials based on lanthanum nickelate and praseodymium nickelate were characterized by a structure of the K2NiF4 type (RuddlesdenPopper phases) with rhombic symmetry. A study of the thermal expansion of cathode materials showed that all the studied materials are characterized by higher CTEs than YSZ and GDC electrolytes. Based on the studies performed, cathode materials were chosen for the formation of composites with GDC electrolyte: La2NiO4, La2Ni0.8Co0.2O4, Pr2NiO4. A study of the sintering kinetics and CTE of composites showed that their thermal characteristics are much closer to those of electrolytes than those of pure cathode materials
Neutron transfer and nuclear breakup in 208Pb(11Li, 9Li) reaction
Neutron transfer and nuclear breakup processes in reaction with weakly bound nucleus 11Li at energies near the Coulomb barrier are investigated in the framework of the time-dependent Schrödinger equation. The evolution of probability density of outer weakly bound neutrons of 11Li in the collision with 208Pb was studied. The probabilities and cross sections of outer neutrons removal (breakup processes and transfer to target nucleus) were calculated. Theoretical predictions of the two-neutron removal probability values were obtained for angles from 140 to 180 degree. The theoretical results have close similarity with experimental data for the two-neutron removal in reaction 208Pb(11Li, 9Li)
SOFC: Prospects of development
One of the main conditions for the transition to hydrogen energy is development of reliable, high-performance and cost-effective fuel cells, in which chemical energy is converted directly into electrical energy. The advantages of solid oxide fuel cells (SOFC) are: high electrical efficiency (50 - 60)%, in cogeneration with thermal energy the efficiency may reach 90%, and high operating temperatures (700-900 °C), which allows us to use practically any hydrocarbon fuel
Evaluation of structural characteristics BaFe(12-x)InxO19 hexaferrite compounds at high temperatures
DATA AVAILABILITY : Data will be made available on request.Please read abstract in the article.https://www.elsevier.com/locate/ssc2026-04-26hj2024PhysicsNon