3 research outputs found

    Methanol to Gasoline-Range Hydrocarbons: Influence of Nanocrystal Size and Mesoporosity on Catalytic Performance and Product Distribution of ZSM-5

    No full text
    Improvement of synthesis methods for ZSM-5 zeolite, as a heteregeneous catalyst, is essential for a wide variety of different reactions in the chemical industry. Decreasing zeolite crystal size and introducing mesoporosity into the zeolite structure can improve its performance in catalytic reaction through decreasing the micropore diffusion path-length and increasing the external surface area. In this study, three different ZSM-5 zeolites (Nano-ZSM-5, Meso-ZSM-5, and Con-ZSM-5) were prepared by a single-templating procedure, and the reaction of methanol to gasoline-range hydrocarbons was evaluated over synthesized ZSM-5 crystals in a fixed-bed continuous flow reactor. Good correlation was observed between catalytic performance, product distribution, mesoporosity, and crystal size of ZSM-5 zeolites. Both nanocrystal and mesoporous ZSM-5 zeolites showed long-term catalytic stability compared with the conventional one. In contrast to conventional ZSM-5 catalyst, the nanocrystal and mesoporous ZSM-5 catalysts showed high selectivities for light olefins and alkyl aromatics, respectively, in the conversion of methanol to gasoline. These results clearly indicate that both crystal size and mesoporosity significantly influence the ZSM-5 lifetime and product distribution
    corecore