6 research outputs found

    Accelerating functional gene discovery in osteoarthritis.

    Get PDF
    Osteoarthritis causes debilitating pain and disability, resulting in a considerable socioeconomic burden, yet no drugs are available that prevent disease onset or progression. Here, we develop, validate and use rapid-throughput imaging techniques to identify abnormal joint phenotypes in randomly selected mutant mice generated by the International Knockout Mouse Consortium. We identify 14 genes with functional involvement in osteoarthritis pathogenesis, including the homeobox gene Pitx1, and functionally characterize 6 candidate human osteoarthritis genes in mouse models. We demonstrate sensitivity of the methods by identifying age-related degenerative joint damage in wild-type mice. Finally, we phenotype previously generated mutant mice with an osteoarthritis-associated polymorphism in the Dio2 gene by CRISPR/Cas9 genome editing and demonstrate a protective role in disease onset with public health implications. We hope this expanding resource of mutant mice will accelerate functional gene discovery in osteoarthritis and offer drug discovery opportunities for this common, incapacitating chronic disease

    Accelerating functional gene discovery in osteoarthritis.

    Get PDF
    Osteoarthritis causes debilitating pain and disability, resulting in a considerable socioeconomic burden, yet no drugs are available that prevent disease onset or progression. Here, we develop, validate and use rapid-throughput imaging techniques to identify abnormal joint phenotypes in randomly selected mutant mice generated by the International Knockout Mouse Consortium. We identify 14 genes with functional involvement in osteoarthritis pathogenesis, including the homeobox gene Pitx1, and functionally characterize 6 candidate human osteoarthritis genes in mouse models. We demonstrate sensitivity of the methods by identifying age-related degenerative joint damage in wild-type mice. Finally, we phenotype previously generated mutant mice with an osteoarthritis-associated polymorphism in the Dio2 gene by CRISPR/Cas9 genome editing and demonstrate a protective role in disease onset with public health implications. We hope this expanding resource of mutant mice will accelerate functional gene discovery in osteoarthritis and offer drug discovery opportunities for this common, incapacitating chronic disease

    Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis

    No full text
    Osteoporosis is a common disease diagnosed primarily by measurement of bone mineral density (BMD). We undertook a genomewide association study (GWAS) in 142,487 individuals from the UK Biobank to identify loci associated with BMD as estimated by quantitative ultrasound of the heel. We identified 307 conditionally independent single-nucleotide polymorphisms (SNPs) that attained genome-wide significance at 203 loci, explaining approximately 12% of the phenotypic variance. These included 153 previously unreported loci, and several rare variants with large effect sizes. To investigate the underlying mechanisms, we undertook (1) bioinformatic, functional genomic annotation and human osteoblast expression studies; (2) gene-function prediction; (3) skeletal phenotyping of 120 knockout mice with deletions of genes adjacent to lead independent SNPs; and (4) analysis of gene expression in mouse osteoblasts, osteocytes and osteoclasts. The results implicate GPC6 as a novel determinant of BMD, and also identify abnormal skeletal phenotypes in knockout mice associated with a further 100 prioritized genes

    Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis

    Get PDF
    Osteoporosis is a common disease diagnosed primarily by measurement of bone mineral density (BMD). We undertook a genome-wide association study (GWAS) in 142,487 individuals from the UK Biobank to identify loci associated with BMD as estimated by quantitative ultrasound of the heel. We identified 307 conditionally independent single-nucleotide polymorphisms (SNPs) that attained genome-wide significance at 203 loci, explaining approximately 12% of the phenotypic variance. These included 153 previously unreported loci, and several rare variants with large effect sizes. To investigate the underlying mechanisms, we undertook (1) bioinformatic, functional genomic annotation and human osteoblast expression studies; (2) gene-function prediction; (3) skeletal phenotyping of 120 knockout mice with deletions of genes adjacent to lead independent SNPs; and (4) analysis of gene expression in mouse osteoblasts, osteocytes and osteoclasts. The results implicate GPC6 as a novel determinant of BMD, and also identify abnormal skeletal phenotypes in knockout mice associated with a further 100 prioritized genes
    corecore