9 research outputs found

    Nanosized carriers based on amphiphilic poly-N-vinyl-2-pyrrolidone for intranuclear drug delivery

    No full text
    AIM: Ability to deliver drugs into the cell nuclei can significantly increase the efficacy of cancer therapies, in particular in the case of multidrug-resistant cancer Results: Polymer nanocarriers based on amphiphilic thiooctadecyl-terminated poly-N-vinyl-2-pyrrolidone were produced and loaded with a model hydrophobic drug, curcumin. Two commonly used loading approaches - emulsification and ultrasonic dispersion - were found to lead to two different size distributions with distinctively different biological effect. While nanocarriers produced via the emulsion method penetrated cells by dynamin-dependent endocytic mechanisms, sub-100 nm dispersion-produced nanocarriers were capable of crossing the membranes via biologically independent mechanisms.CONCLUSION: This finding opens an intriguing possibility of intranuclear delivery by merely tailoring the size of polymeric carriers, thus promising a new approach for cancer therapies.</p

    Chemical-induced contact allergy: from mechanistic understanding to risk prevention

    No full text

    Prompt and non-prompt J/ψ production at midrapidity in Pb–Pb collisions at sNN \sqrt{s_{\textrm{NN}}} = 5.02 TeV

    No full text
    Abstract The transverse momentum (pT) and centrality dependence of the nuclear modification factor RAA of prompt and non-prompt J/ψ, the latter originating from the weak decays of beauty hadrons, have been measured by the ALICE collaboration in Pb–Pb collisions at sNN \sqrt{s_{\textrm{NN}}} s NN = 5.02 TeV. The measurements are carried out through the e+e− decay channel at midrapidity (|y| &lt; 0.9) in the transverse momentum region 1.5 &lt; pT &lt; 10 GeV/c. Both prompt and non-prompt J/ψ measurements indicate a significant suppression for pT &gt; 5 GeV/c, which becomes stronger with increasing collision centrality. The results are consistent with similar LHC measurements in the overlapping pT intervals, and cover the kinematic region down to pT = 1.5 GeV/c at midrapidity, not accessible by other LHC experiments. The suppression of prompt J/ψ in central and semicentral collisions exhibits a decreasing trend towards lower transverse momentum, described within uncertainties by models implementing J/ψ production from recombination of c and c \overline{\textrm{c}} c ¯ quarks produced independently in different partonic scatterings. At high transverse momentum, transport models including quarkonium dissociation are able to describe the suppression for prompt J/ψ. For non-prompt J/ψ, the suppression predicted by models including both collisional and radiative processes for the computation of the beauty-quark energy loss inside the quark-gluon plasma is consistent with measurements within uncertainties.</jats:p

    Measurements of long-range two-particle correlation over a wide pseudorapidity range in p-Pb collisions at √sNN=5.02 TeV

    No full text

    Multiplicity and event-scale dependent flow and jet fragmentation in pp collisions at s \sqrt{s} = 13 TeV and in p–Pb collisions at sNN \sqrt{s_{\textrm{NN}}} = 5.02 TeV

    No full text
    Abstract Long- and short-range correlations for pairs of charged particles are studied via two-particle angular correlations in pp collisions at s \sqrt{s} s = 13 TeV and p–Pb collisions at sNN \sqrt{s_{\textrm{NN}}} s NN = 5.02 TeV. The correlation functions are measured as a function of relative azimuthal angle ∆φ and pseudorapidity separation ∆η for pairs of primary charged particles within the pseudorapidity interval |η| &lt; 0.9 and the transverse-momentum interval 1 &lt; pT&lt; 4 GeV/c. Flow coefficients are extracted for the long-range correlations (1.6 &lt; |∆η| &lt; 1.8) in various high-multiplicity event classes using the low-multiplicity template fit method. The method is used to subtract the enhanced yield of away-side jet fragments in high-multiplicity events. These results show decreasing flow signals toward lower multiplicity events. Furthermore, the flow coefficients for events with hard probes, such as jets or leading particles, do not exhibit any significant changes compared to those obtained from high-multiplicity events without any specific event selection criteria. The results are compared with hydrodynamic-model calculations, and it is found that a better understanding of the initial conditions is necessary to describe the results, particularly for low-multiplicity events.</jats:p

    Prompt and non-prompt J/ψ production at midrapidity in Pb-Pb collisions at √sNN=5.02 TeV

    No full text

    Multiplicity and event-scale dependent flow and jet fragmentation in pp collisions at √s=13 TeV and in p-Pb collisions at √sNN=5.02 TeV

    No full text

    Polymeric Surfactants: Synthesis, Properties, and Links to Applications

    No full text
    corecore