115 research outputs found

    Matrix Element and Strong Electron Correlation Effects in ARPES from Cuprates

    Full text link
    We discuss selected results from our recent work concerning the ARPES (angle-resolved photoemission) spectra from the cuprates. Our focus is on developing an understanding of the effects of the ARPES matrix element and those of strong electron correlations in analyzing photointensities. With simulations on Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} (Bi2212), we show that the ARPES matrix element possesses remarkable selectivity properties, such that by tuning the photon energy and polarization, emission from the bonding or the antibonding states can be enhanced. Moreover, at low photon energies (below 25 eV), the Fermi surface (FS) emission is dominated by transitions from just the O-atoms in the CuO2_2 planes. In connection with strong correlation effects, we consider the evolution with doping of the FS of Nd2−x_{2-x}Cex_xCuO4±δ_{4\pm\delta} (NCCO) in terms of the tt-t′t'-UU Hubbard model Hamiltonian. We thus delineate how the FS evolves on electron doping from the insulating state in NCCO. The Mott pseudogap is found to collapse around optimal doping suggesting the existence of an associated quantum critical point.Comment: 5 pages, 4 figures, accepted to be published in Journal of Physics and Chemistry of Solid

    Precision microwave dielectric and magnetic susceptibility measurements of correlated electronic materials using superconducting cavities

    Full text link
    We analyze microwave cavity perturbation methods, and show that the technique is an excellent, precision method to study the dynamic magnetic and dielectric response in the GHzGHz frequency range. Using superconducting cavities, we obtain exceptionally high precision and sensitivity for measurements of relative changes. A dynamic electromagnetic susceptibility ζ~(T)=ζ′+iζ′′\tilde{\zeta}(T)=\zeta ^{\prime}+i\zeta ^{\prime \prime} is introduced, which is obtained from the measured parameters: the shift of cavity resonant frequency δf\delta f and quality factor QQ. We focus on the case of a spherical sample placed at the center of a cylindrical cavity resonant in the TE011TE_{011} mode. Depending on the sample characteristics, the magnetic permeability μ~\tilde{\mu}, the dielectric permittivity ϵ~\tilde{\epsilon} and the complex conductivity σ~\tilde{\sigma} can be extracted from ζ~H\tilde{\zeta}_{H}. A full spherical wave analysis of the cavity perturbation is given. This analysis has led to the observation of new phenomena in novel low dimensional materials.Comment: 16 pages, 5 figure

    Quantum communication networks with optical vortices

    Full text link
    Quantum communications bring a paradigm change in internet security by using quantum resources to establish secure keys between parties. Present-day quantum communications networks are mainly point-to-point and use trusted nodes and key management systems to relay the keys. Future quantum networks, including the quantum internet, will have complex topologies in which groups of users are connected and communicate with each-other. Here we investigate several architectures for quantum communication networks. We show that photonic orbital angular momentum (OAM) can be used to route quantum information between different nodes. Starting from a simple, point-to-point network, we will gradually develop more complex architectures: point-to-multipoint, fully-connected and entanglement-distribution networks. As a particularly important result, we show that an nn-node, fully-connected network can be constructed with a single OAM sorter and n−1n-1 OAM values. Our results pave the way to construct complex quantum communication networks with minimal resources.Comment: 10 pages, 9 figure

    Fate of Quasiparticle at Mott Transition and Interplay with Lifshitz Transition Studied by Correlator Projection Method

    Full text link
    Filling-control metal-insulator transition on the two-dimensional Hubbard model is investigated by using the correlator projection method, which takes into account momentum dependence of the free energy beyond the dynamical mean-field theory. The phase diagram of metals and Mott insulators is analyzed. Lifshitz transitions occur simultaneously with metal-insulator transitions at large Coulomb repulsion. On the other hand, they are separated each other for lower Coulomb repulsion, where the phase sandwiched by the Lifshitz and metal-insulator transitions appears to show violation of the Luttinger sum rule. Through the metal-insulator transition, quasiparticles retain nonzero renormalization factor and finite quasi-particle weight in the both sides of the transition. This supports that the metal-insulator transition is caused not by the vanishing renormalization factor but by the relative shift of the Fermi level into the Mott gap away from the quasiparticle band, in sharp contrast with the original dynamical mean-field theory. Charge compressibility diverges at the critical end point of the first-order Lifshitz transition at finite temperatures. The origin of the divergence is ascribed to singular momentum dependence of the quasiparticle dispersion.Comment: 24 pages including 10 figure

    Characteristic features of the temperature dependence of the surface impedance in polycrystalline MgB2_2 samples

    Full text link
    The real Rs(T)R_s(T) and imaginary Xs(T)X_s(T) parts of the surface impedance Zs(T)=Rs(T)+iXs(T)Z_s(T)=R_s(T)+iX_s(T) in polycrystalline MgB2_2 samples of different density with the critical temperature Tc≈38T_c\approx 38 K are measured at the frequency of 9.4 GHz and in the temperature range 5≤T<2005\le T<200 K. The normal skin-effect condition Rs(T)=Xs(T)R_s(T)=X_s(T) at T≥TcT\ge T_c holds only for the samples of the highest density with roughness sizes not more than 0.1 μ\mum. For such samples extrapolation T→0T\to 0 of the linear at T<Tc/2T<T_c/2 temperature dependences λL(T)=Xs(T)/ωμ0\lambda_L(T)=X_s(T)/\omega\mu_0 and Rs(T)R_s(T) results in values of the London penetration depth λL(0)≈600\lambda_L(0)\approx 600 \AA and residual surface resistance Rres≈0.8R_{res}\approx 0.8 mΩ\Omega. In the entire temperature range the dependences Rs(T)R_s(T) and Xs(T)X_s(T) are well described by the modified two-fluid model.Comment: 7 pages, 3 figures. Europhysics Letters, accepted for publicatio

    Influence of spin structures and nesting on Fermi surface and a pseudogap anisotropy in t-t'-U Hubbard model

    Full text link
    Influence of two type of spin structures on the form of the Fermi surface (FS) and a photoemission intensity map is studied for t-t'-U Hubbard model. Mean field calculations are done for the stripe phase and for the spiral spin structure. It is shown, that unlike a case of electron doping, the hole-doped models are unstable with respect to formation of such structures. The pseudogap anisotropies are different for h- and e- doping. In accordance with ARPES data for La2SrxCuO4 the stripe phase is characterized by quasi-one-dimensional segments of FS at k=(\pi,0) and by suppression of spectral weight in diagonal direction. It is shown that spiral structures display the polarisation anisotropy: different segments of FS correspond to electros with different spin polarisations.Comment: 12 pages, 4 figure

    Remnant Fermi Surfaces in Photoemission

    Full text link
    Recent experiments have introduced a new concept for analyzing the photoemission spectra of correlated electrons -- the remnant Fermi surface (rFs), which can be measured even in systems which lack a conventional Fermi surface. Here, we analyze the rFs in a number of interacting electron models, and find that the results fall into two classes. For systems with pairing instabilities, the rFs is an accurate replica of the true Fermi surface. In the presence of nesting instabilities, the rFs is a map of the resulting superlattice Brillouin zone. The results suggest that the gap in Ca_2CuO_2Cl_2 is of nesting origin.Comment: 4 pages LaTex, 3 ps figure
    • …
    corecore