65 research outputs found
Humoral Immune Response to Mixed PfAMA1 Alleles; Multivalent PfAMA1 Vaccines Induce Broad Specificity
Apical Membrane Antigen 1 (AMA1), a merozoite protein essential for red cell invasion, is a candidate malaria vaccine component. Immune responses to AMA1 can protect in experimental animal models and antibodies isolated from AMA1-vaccinated or malaria-exposed humans can inhibit parasite multiplication in vitro. The parasite is haploid in the vertebrate host and the genome contains a single copy of AMA1, yet on a population basis a number of AMA1 molecular surface residues are polymorphic, a property thought to be primarily as a result of selective immune pressure. After immunisation with AMA1, antibodies more effectively inhibit strains carrying homologous AMA1 genes, suggesting that polymorphism may compromise vaccine efficacy. Here, we analyse induction of broad strain inhibitory antibodies with a multi-allele Plasmodium falciparum AMA1 (PfAMA1) vaccine, and determine the relative importance of cross-reactive and strain-specific IgG fractions by competition ELISA and in vitro parasite growth inhibition assays. Immunisation of rabbits with a PfAMA1 allele mixture yielded an increased proportion of antibodies to epitopes common to all vaccine alleles, compared to single allele immunisation. Competition ELISA with the anti-PfAMA1 antibody fraction that is cross-reactive between FVO and 3D7 AMA1 alleles showed that over 80% of these common antibodies were shared with other PfAMA1 alleles. Furthermore, growth inhibition assays revealed that for any PfAMA1 allele (FVO or 3D7), the cross-reactive fraction alone, on basis of weight, had the same functional capacity on homologous parasites as the total affinity-purified IgGs (cross-reactive+strain-specific). By contrast, the strain-specific IgG fraction of either PfAMA1 allele showed slightly less inhibition of red cell invasion by homologous strains. Thus multi-allele immunisation relatively increases the levels of antibodies to common allele epitopes. This explains the broadened cross inhibition of diverse malaria parasites, and suggests multi-allele approaches warrant further clinical investigation
Safety and immunogenicity of multi-antigen AMA1-based vaccines formulated with CoVaccine HT™ and Montanide ISA 51 in rhesus macaques
<p>Abstract</p> <p>Background</p> <p>Increasing the breadth of the functional antibody response through immunization with <it>Plasmodium falciparum </it>apical membrane antigen 1 (<it>Pf</it>AMA1) multi-allele vaccine formulations has been demonstrated in several rodent and rabbit studies. This study assesses the safety and immunogenicity of three <it>Pf</it>AMA1 Diversity-Covering (DiCo) vaccine candidates formulated as an equimolar mixture (DiCo mix) in CoVaccine HT™ or Montanide ISA 51, as well as that of a <it>Pf</it>AMA1-MSP1<sub>19 </sub>fusion protein formulated in Montanide ISA 51.</p> <p>Methods</p> <p>Vaccine safety in rhesus macaques was monitored by animal behaviour observation and assessment of organ and systemic functions through clinical chemistry and haematology measurements. The immunogenicity of vaccine formulations was assessed by enzyme-linked immunosorbent assays and <it>in vitro </it>parasite growth inhibition assays with three culture-adapted <it>P. falciparum </it>strains.</p> <p>Results</p> <p>These data show that both adjuvants were well tolerated with only transient changes in a few of the chemical and haematological parameters measured. DiCo mix formulated in CoVaccine HT™ proved immunologically and functionally superior to the same candidate formulated in Montanide ISA 51. Immunological data from the fusion protein candidate was however difficult to interpret as four out of six immunized animals were non-responsive for unknown reasons.</p> <p>Conclusions</p> <p>The study highlights the safety and immunological benefits of DiCo mix as a potential human vaccine against blood stage malaria, especially when formulated in CoVaccine HT™, and adds to the accumulating data on the specificity broadening effects of DiCo mix.</p
Immunization with different PfAMA1 alleles in sequence induces clonal imprint humoral responses that are similar to responses induced by the same alleles as a vaccine cocktail in rabbits
<p>Abstract</p> <p>Background</p> <p>Antibodies to key <it>Plasmodium falciparum </it>surface antigens have been shown to be important effectors that mediate clinical immunity to malaria. The cross-strain fraction of anti-malarial antibodies may however be required to achieve</p> <p>strain-transcending immunity. Such antibody responses against <it>Plasmodium falciparum </it>apical membrane antigen 1 (<it>Pf</it>AMA1), a vaccine target molecule that is expressed in both liver and blood stages of the parasite, can be elicited through immunization with a mixture of allelic variants of the parasite molecule. Cross-strain antibodies are most likely elicited against epitopes that are shared by the allelic antigens in the vaccine cocktail.</p> <p>Methods</p> <p>A standard competition ELISA was used to address whether the antibody response can be further focused on shared epitopes by exclusively boosting these common determinants through immunization of rabbits with different <it>Pf</it>AMA1 alleles in sequence. Th<it>e in vitro </it>parasite growth inhibition assay was used to further evaluate the functional effects of the broadened antibody response that is characteristic of multi-allele vaccine strategies.</p> <p>Results</p> <p>A mixed antigen immunization protocol elicited humoral responses that were functionally similar to those elicited by a sequential immunization protocol (p > 0.05). Sequential exposure to the different <it>Pf</it>AMA1 allelic variants induced immunological recall of responses to previous alleles and yielded functional cross-strain antibodies that would be capable of optimal growth inhibition of variant parasites at high enough concentrations.</p> <p>Conclusions</p> <p>These findings may have implications for the current understanding of the natural acquisition of clinical immunity to malaria as well as for rational vaccine design.</p
The COVID-19 pandemic in the African continent.
In December 2019, a new coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and associated disease, coronavirus disease 2019 (COVID-19), was identified in China. This virus spread quickly and in March, 2020, it was declared a pandemic. Scientists predicted the worst scenario to occur in Africa since it was the least developed of the continents in terms of human development index, lagged behind others in achievement of the United Nations sustainable development goals (SDGs), has inadequate resources for provision of social services, and has many fragile states. In addition, there were relatively few research reporting findings on COVID-19 in Africa. On the contrary, the more developed countries reported higher disease incidences and mortality rates. However, for Africa, the earlier predictions and modelling into COVID-19 incidence and mortality did not fit into the reality. Therefore, the main objective of this forum is to bring together infectious diseases and public health experts to give an overview of COVID-19 in Africa and share their thoughts and opinions on why Africa behaved the way it did. Furthermore, the experts highlight what needs to be done to support Africa to consolidate the status quo and overcome the negative effects of COVID-19 so as to accelerate attainment of the SDGs
Measurement of the plasma levels of antibodies against the polymorphic vaccine candidate apical membrane antigen 1 in a malaria-exposed population
<p>Abstract</p> <p>Background</p> <p>Establishing antibody correlates of protection against malaria in human field studies and clinical trials requires, amongst others, an accurate estimation of antibody levels. For polymorphic antigens such as apical membrane antigen 1 (AMA1), this may be confounded by the occurrence of a large number of allelic variants in nature.</p> <p>Methods</p> <p>To test this hypothesis, plasma antibody levels in an age-stratified cohort of naturally exposed children from a malaria-endemic area in Southern Ghana were determined by indirect ELISA. Titres against four single <it>Pf</it>AMA1 alleles were compared with those against three different allele mixtures presumed to have a wider repertoire of epitope specificities. Associations of antibody levels with the incidence of clinical malaria as well as with previous exposure to parasites were also examined.</p> <p>Results</p> <p>Antibody titres against <it>Pf</it>AMA1 alleles generally increased with age/exposure while antibody specificity for <it>Pf</it>AMA1 variants decreased, implying that younger children (≤ 5 years) elicit a more strain-specific antibody response compared to older children. Antibody titre measurements against the FVO and 3D7 AMA1 alleles gave the best titre estimates as these varied least in pair-wise comparisons with titres against all <it>Pf</it>AMA1 allele mixtures. There was no association between antibody levels against any capture antigen and either clinical malaria incidence or parasite density.</p> <p>Conclusions</p> <p>The current data shows that levels of naturally acquired antigen-specific antibodies, especially in infants and young children, are dependent on the antigenic allele used for measurement. This may be relevant to the interpretation of antibody titre data from measurements against single <it>Pf</it>AMA1 alleles, especially in studies involving infants and young children who have experienced fewer infections.</p
Macrophage susceptibility to infection by Ghanaian Mycobacterium tuberculosis complex lineages 4 and 5 varies with self-reported ethnicity
BackgroundThe epidemiology of Mycobacterium tuberculosis complex (MTBC) lineage 5 (L5) infections in Ghana revealed a significantly increased prevalence in Ewes compared to other self-reported ethnic groups. In that context, we sought to investigate the early phase of tuberculosis (TB) infection using ex vivo infection of macrophages derived from the blood of Ewe and Akan ethnic group volunteers with MTBC L4 and L5 strains.MethodsThe study participants consisted of 16 controls, among which self-reported Akan and Ewe ethnicity was equally represented, as well as 20 cured TB cases consisting of 11 Akans and 9 Ewes. Peripheral blood mononuclear cells were isolated from both healthy controls and cured TB cases. CD14+ monocytes were isolated and differentiated into monocyte-derived macrophages (MDMs) before infection with L4 or L5 endemic strains. The bacterial load was assessed after 2 hours (uptake) as well as 3 and 7 days post-infection.ResultsWe observed a higher capacity of MDMs from Ewes to phagocytose L4 strains (p < 0.001), translating into a higher bacillary load on day 7 (p < 0.001) compared to L5, despite the higher replication rate of L5 in Ewe MDMs (fold change: 1.4 vs. 1.2, p = 0.03) among the controls. On the contrary, within macrophages from Akans, we observed a significantly higher phagocytic uptake of L5 (p < 0.001) compared to L4, also translating into a higher load on day 7 (p = 0.04). However, the replication rate of L4 in Akan MDMs was higher than that of L5 (fold change: L4 = 1.2, L4 = 1.1, p = 0.04). Although there was no significant difference in the uptake of L4 and L5 among cured TB cases, there was a higher bacterial load of both L4 (p = 0.02) and L5 (p = 0.02) on day 7 in Ewe MDMs.ConclusionOur results suggest that host ethnicity (driven by host genetic diversity), MTBC genetic diversity, and individual TB infection history are all acting together to modulate the outcome of macrophage infections by MTBC
Generation of Humoral Immune Responses to Multi-Allele PfAMA1 Vaccines; Effect of Adjuvant and Number of Component Alleles on the Breadth of Response
There is increasing interest in multi-allele vaccines to overcome strain-specificity against polymorphic vaccine targets such as Apical Membrane Antigen 1 (AMA1). These have been shown to induce broad inhibitory antibodies in vitro and formed the basis for the design of three Diversity-Covering (DiCo) proteins with similar immunological effects. The antibodies produced are to epitopes that are shared between vaccine alleles and theoretically, increasing the number of component AMA1 alleles is expected to broaden the antibody response. A plateau effect could however impose a limit on the number of alleles needed to achieve the broadest specificity. Moreover, production cost and the vaccine formulation process would limit the number of component alleles. In this paper, we compare rabbit antibody responses elicited with multi-allele vaccines incorporating seven (three DiCos and four natural AMA1 alleles) and three (DiCo mix) antigens for gains in broadened specificity. We also investigate the effect of three adjuvant platforms on antigen specificity and antibody functionality. Our data confirms a broadened response after immunisation with DiCo mix in all three adjuvants. Higher antibody titres were elicited with either CoVaccine HT™ or Montanide ISA 51, resulting in similar in vitro inhibition (65–82%) of five out of six culture-adapted P. falciparum strains. The antigen binding specificities of elicited antibodies were also similar and independent of the adjuvant used or the number of vaccine component alleles. Thus neither the four extra antigens nor adjuvant had any observable benefits with respect to specificity broadening, although adjuvant choice influenced the absolute antibody levels and thus the extent of parasite inhibition. Our data confirms the feasibility and potential of multi-allele PfAMA1 formulations, and highlights the need for adjuvants with improved antibody potentiation properties for AMA1-based vaccines
Serum biochemical parameters and cytokine profiles associated with natural African trypanosome infections in cattle.
BACKGROUND: Animal African trypanosomiasis (AAT) greatly affects livestock production in sub-Saharan Africa. In Ghana prevalence of AAT is estimated to range between 5 and 50%. Studies have reported serum biochemical aberrations and variability in cytokine profiles in animals during infection. However, information regarding the biochemical parameters and cytokine profiles associated with natural infections are limited. This study was therefore aimed at investigating changes in the levels of serum biochemical parameters and inflammatory cytokines during a natural infection. METHODS: Nested internal transcribed spacer (ITS)-based PCR and sequencing were used to characterise trypanosome infection in cattle at two areas in Ghana (Adidome and Accra) of different endemicities. The cattle were sampled at four to five-week intervals over a period of six months. Levels of serum biochemical parameters, including creatinine, cholesterol, alkaline phosphatase (ALP), alanine aminotransferase (ALT), total bilirubin and total protein and cytokines (interleukin 10, interleukin 4, interleukin 12, interferon gamma and tumor necrosis factor alpha) were measured in serum samples and then compared between infected cattle and uninfected controls. RESULTS: The predominant trypanosome species detected in Accra (non-endemic) and Adidome (endemic) were Trypanosoma theileri and Trypanosoma vivax, respectively. Serum biochemical parameters were similar between infected and uninfected cattle in Accra. Infected cattle at Adidome however, had significantly higher levels of ALP, creatinine, total protein and total bilirubin (P < 0.05) and significantly lower levels of cholesterol (P < 0.05) at specific time points. At basal levels and during infection, significantly higher pro-inflammatory to anti-inflammatory (Th1/Th2) cytokine ratios were observed in cattle at Adidome compared to Accra (P < 0.05), indicating a shift towards Th1 immune response in Adidome. Levels of IL-10 were, however, significantly elevated in infected cattle in Accra (P < 0.05), suggesting high anti-inflammatory cytokine response in Accra. CONCLUSION: These results suggests that cattle in an endemic area repeatedly infected with trypanosomes of different species or different antigenic types demonstrate high pro-inflammatory (Th1) immune response and biochemical alterations whereas cattle in a non-endemic area with predominantly chronic T. theileri infections demonstrate high anti-inflammatory response and no biochemical alterations
- …