1,044 research outputs found

    Single-particle and collective excitations in quantum wires made up of vertically stacked quantum dots: Zero magnetic field

    Full text link
    We report on the theoretical investigation of the elementary electronic excitations in a quantum wire made up of vertically stacked self-assembled InAs/GaAs quantum dots. The length scales (of a few nanometers) involved in the experimental setups prompt us to consider an infinitely periodic system of two-dimensionally confined (InAs) quantum dot layers separated by GaAs spacers. The the Bloch functions and the Hermite functions together characterize the whole system. We then make use of the Bohm-Pines' (full) random-phase approximation in order to derive a general nonlocal, dynamic dielectric function. Thus developed theoretical framework is then specified to work within a (lowest miniband and) two-subband model that enables us to scrutinize the single-particle as well as collective responses of the system. We compute and discuss the behavior of the eigenfunctions, band-widths, density of states, Fermi energy, single-particle and collective excitations, and finally size up the importance of studying the inverse dielectric function in relation with the quantum transport phenomena. It is remarkable to notice how the variation in the barrier- and well-widths can allow us to tailor the excitation spectrum in the desired energy range. Given the advantage of the vertically stacked quantum dots over the planar ones and the foreseen applications in the single-electron devices and in the quantum computation, it is quite interesting and important to explore the electronic, optical, and transport phenomena in such systems

    Au9+ swift heavy ion irradiation of Zn[CS(NH2)2]3SO4 crystal: Crystalline perfection and optical properties

    Full text link
    The single crystal of tris(thiourea)zinc sulphate (Zn[CS(NH2)2]3SO4) was irradiated by 150 MeV Au9+ swift heavy ions and analyzed in comparison with pure crystal for crystalline perfection and optical properties. The Fourier transform infrared and x-ray powder diffraction inferred that swift ions lead the disordering and breaking of molecular bonds in lattice without formation of new structural phases. High resolution X-ray diffraction (HRXRD) revealed the abundance of point defects, and formation of mosaics and low angle grain boundaries in the irradiated region of crystal. The swift ion irradiation found to affect the lattice vibrational modes and functional groups significantly. The defects induced by heavy ions act as the color centers and resulted in enhance of photoluminescence emission intensity. The optical transparency and band gap found to be decreased.Comment: 7 page

    Scattering of elastic waves by periodic arrays of spherical bodies

    Full text link
    We develop a formalism for the calculation of the frequency band structure of a phononic crystal consisting of non-overlapping elastic spheres, characterized by Lam\'e coefficients which may be complex and frequency dependent, arranged periodically in a host medium with different mass density and Lam\'e coefficients. We view the crystal as a sequence of planes of spheres, parallel to and having the two dimensional periodicity of a given crystallographic plane, and obtain the complex band structure of the infinite crystal associated with this plane. The method allows one to calculate, also, the transmission, reflection, and absorption coefficients for an elastic wave (longitudinal or transverse) incident, at any angle, on a slab of the crystal of finite thickness. We demonstrate the efficiency of the method by applying it to a specific example.Comment: 19 pages, 5 figures, Phys. Rev. B (in press

    A Demand Based Load Balanced Service Replication Model

    Get PDF
    Cloud computing allows service users and providers to access the applications, logical resources and files on any computer with ease. A cloud service has three distinct characteristics that differentiate it from traditional hosting. It is sold on demand, typically by the minute or the hour; it is elastic. It is a way to increase capacity or add capabilities on the fly without investing in new infrastructure, training new personnel, or licensing new software. It not only promises reliable services delivered through next-generation data centers that are built on compute and storage virtualization technologies but also addresses the key issues such as scalability, reliability, fault tolerance and file load balancing. The one way to achieve this is through service replication across different machines coupled with load balancing. Though replication potentially improves fault tolerance, it leads to the problem of ensuring consistency of replicas when certain service is updated or modified. However, fewer replicas also decrease concurrency and the level of service availability. A balanced synchronization between replication mechanism and consistency not only ensures highly reliable and fault tolerant system but also improves system performance significantly. This paper presents a load balancing based service replication model that creates a replica on other servers on the basis of number of service accesses. The simulation results indicate that the proposed model reduces the number of messages exchanged for service replication by 25-55% thus improving the overall system performance significantly. Also in case of CPU load based file replication, it is observed that file access time reduces by 5.56%-7.65%

    Viscoelastic response of sonic band-gap materials

    Full text link
    A brief report is presented on the effect of viscoelastic losses in a high density contrast sonic band-gap material of close-packed rubber spheres in air. The scattering properties of such a material are computed with an on-shell multiple scattering method, properties which are compared with the lossless case. The existence of an appreciable omnidirectional gap in the transmission spectrum, when losses are present, is also reported.Comment: 5 pages, 4 figures, submitted to PR

    Elastodynamic transient analysis of a four-cylinder valvetrain system with camshaft flexibility

    Get PDF
    This paper presents an analysis of a line of valvetrains in a four-cylinder, four-stroke in-line diesel engine. The method highlighted in this paper predicts the vibration signature together with the prevailing contact conditions and frictional characteristics exhibited in the valvetrain system. This integrated dynamic and tribological investigation provides a practical approach that can be used during the design or the evaluation phase of automotive valvetrain systems
    • …
    corecore