2 research outputs found

    Impact of agricultural management on soil aggregates and associated organic carbon fractions: analysis of long-term experiments in Europe

    Get PDF
    Inversion tillage is a commonly applied soil cultivation practice in Europe, which often has been blamed for deteriorating topsoil stability and organic carbon (OC) content. In this study, the potential to reverse these negative effects in the topsoil by alternative agricultural management practices are evaluated in seven long-term experiments (running from 8 to 54 years the moment of sampling) in five European countries (Belgium, Czech Republic, Hungary, Italy and UK). Topsoil samples (0–15 cm) were collected and analysed to evaluate the effects of conservation tillage (reduced and no tillage) and increased organic inputs of different origin (farmyard manure, compost, crop residues) combined with inversion tillage on topsoil stability, soil aggregates and, within these, OC distribution using wet sieving after slaking. Effects from the treatments on the two main components of organic matter, i.e. particulate (POM) and mineral associated (MAOM), were also evaluated using dispersion and size fractionation. Reduced and no-tillage practices, as well as the additions of manure or compost, increased the aggregates mean weight diameter (MWD) (up to 49 % at the Belgian study site) and topsoil OC (up to 51 % at the Belgian study site), as well as the OC corresponding to the different aggregate size fractions. The incorporation of crop residues had a positive impact on the MWD but a less profound effect both on total OC and on OC associated with the different aggregates. A negative relationship between the mass and the OC content of the microaggregates (53–250 µm) was identified in all experiments. There was no effect on the mass of the macroaggregates and the occluded microaggregates (mM) within these macroaggregates, while the corresponding OC contents increased with less tillage and more organic inputs. Inversion tillage led to less POM within the mM, whereas the different organic inputs did not affect it. In all experiments where the total POM increased, the total soil organic carbon (SOC) was also affected positively. We concluded that the negative effects of inversion tillage on topsoil can be mitigated by reducing the tillage intensity or adding organic materials, optimally combined with non-inversion tillage methods.</p

    Winter Wheat Straw Decomposition under Different Nitrogen Fertilizers

    No full text
    The climate changes and increased drought frequency still more frequent in recent periods bring challenges to management with wheat straw remaining in the field after harvest and to its decomposition. The field experiment carried out in 2017–2019 in the Czech Republic aimed to evaluate winter wheat straw decomposition under different organic and mineral nitrogen fertilizing (urea, pig slurry and digestate with and without inhibitors of nitrification (IN)). Treatment Straw 1 with fertilizers was incorporated in soil each year the first day of experiment. The Straw 2 was placed on soil surface at the same day as Straw 1 and incorporated together with fertilizers after 3 weeks. The Straw 1 decomposition in N treatments varied between 25.8–40.1% and in controls between 21.5–33.1% in 2017–2019. The Straw 2 decomposition varied between 26.3–51.3% in N treatments and in controls between 22.4–40.6%. Higher straw decomposition in 2019 was related to more rainy weather. The drought observed mainly in 2018 led to the decrease of straw decomposition and to the highest contents of residual mineral nitrogen in soils. The limited efficiency of N fertilisers on straw decomposition under drought showed a necessity of revision of current strategy of N treatments and reduction of N doses adequately according the actual weather conditions
    corecore