28 research outputs found
Neurovascular unit dysfunction with blood-brain barrier hyperpermeability contributes to major depressive disorder: a review of clinical and experimental evidence
About one-third of people with major depressive disorder (MDD) fail at least two antidepressant drug trials at 1 year. Together with clinical and experimental evidence indicating that the pathophysiology of MDD is multifactorial, this observation underscores the importance of elucidating mechanisms beyond monoaminergic dysregulation that can contribute to the genesis and persistence of MDD. Oxidative stress and neuroinflammation are mechanistically linked to the presence of neurovascular dysfunction with blood-brain barrier (BBB) hyperpermeability in selected neurological disorders, such as stroke, epilepsy, multiple sclerosis, traumatic brain injury, and Alzheimer’s disease. In contrast to other major psychiatric disorders, MDD is frequently comorbid with such neurological disorders and constitutes an independent risk factor for morbidity and mortality in disorders characterized by vascular endothelial dysfunction (cardiovascular disease and diabetes mellitus). Oxidative stress and neuroinflammation are implicated in the neurobiology of MDD. More recent evidence links neurovascular dysfunction with BBB hyperpermeability to MDD without neurological comorbidity. We review this emerging literature and present a theoretical integration between these abnormalities to those involving oxidative stress and neuroinflammation in MDD. We discuss our hypothesis that alterations in endothelial nitric oxide levels and endothelial nitric oxide synthase uncoupling are central mechanistic links in this regard. Understanding the contribution of neurovascular dysfunction with BBB hyperpermeability to the pathophysiology of MDD may help to identify novel therapeutic and preventative approaches
Carbon nanotube wires for high-temperature performance
We developed carbon nanotube wires (CNWs) and monitored in situ their electrical properties at high temperature conditions for the first time. The dominant type of CNTs present in the material and packing density of thereof proved to have a dominant effect on the thermal stability of CNWs. Furthermore, we showed that kinetics of CNW oxidation plays an important role and slow heating rates or prolonged heating times are essential for the proper determination of thermal stability of CNTs. To enhance the stability at high temperatures, we applied SiC coating onto the CNWs, what allowed a 300 C improvement to the operational window, eventually reaching 700 C in the long-haul. Correlation of the change in electrical properties with thermogravimetric response showed that the loss of electrical percolation takes place at 100 C lower temperature than the last observed weight loss in CNTs content. Finally, we demonstrated feasibility of SiC-coated CNWs under high temperature conditions, by creating a heating device out of them. The presence of SiC layer gave rise to a significant improvement to the thermal stability of the CNT heaters, which now offer unprecedented range of operation reaching 700 C, as compared to 400 C when uncoated. © 2013 Elsevier Ltd. All rights reserved
Electrical properties of carbon nanotube based fibers and their future use in electrical wiring
The production of continuous fibers made purely of carbon nanotubes has paved the way for new macro-scale applications which utilize the superior properties of individual carbon nanotubes. These wire-like macroscopic assemblies of carbon nanotubes were recognized to have a potential to be used in electrical wiring. Carbon nanotube wiring may be extremely light and mechanically stronger and more efficient in transferring high frequency signals than any conventional conducting material, being cost-effective simultaneously. However, transfer of the unique properties of individual CNTs to the macro-scale proves to be quite challenging. This Feature Article gives an overview of the potential of using carbon nanotube fibers as next generation wiring, state of the art developments in this field, and goals to be achieved before carbon nanotubes may be transformed into competitive products. Carbon nanotubes, with their unique properties, could make electrical conductors of unprecedented performance, which could revolutionize energy transport globally. Is it feasible to produce macroscopic conductors from nanoscale structures? This Feature Article presents both the most recent results of a highly promising research program in this area and the key challenges that need to be overcome. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Microwave conductivity of sorted CNT assemblies.
Recent progress with tailored growth and post-process sorting enables carbon nanotube (CNT) assemblies with predominantly metallic or semi-conducting concentrations. Cryogenic and microwave measurements performed here show transport dimensionality and overall order increasing with increasing metallic concentration, even in atmospheric doping conditions. By 120 GHz, the conductivity of predominantly semi-conducting assemblies grew to 400% its DC value at an increasing growth rate, while other concentrations a growth rate that tapered off. A generalized Drude model fits to the different frequency dependent behaviors and yields useful quality control parameters such as plasma frequency, mean free path, and degree of localization. As one of the first demonstrations of waveguides fabricated from this material, sorted CNTs from both as-made and post-process sources were inserted into sections of practical micro-strip. With both sources, sorted CNT micro-strip increasingly outperformed the unsorted with increasing frequency-- illustrating that sorted CNT assemblies will be important for high frequency applications
MMP Activity Detection in Zymograms
Matrix metalloproteinases (MMP) belong to a distinguished class of zinc-depending endopeptidases. Zymography is a semi-quantitative tool for determining the activity of different MMP isoenzymes in a variety of biological samples. In substrate gel zymography, protein samples of different origin (tissue, cell lysates, plasma/serum, perfusates, other liquids) are separated in sodium dodecyl sulfate (SDS) polyacrylamide gels containing co-polymerized substrate (gelatin, casein, elastin, etc.), and after incubation enabling substrate cleavage by MMPs, MMP activities are detected after the gel staining as transparent bands against a dark-blue background. In situ zymography is a histological modification of substrate zymography in frozen sections, allowing detection of the localization of the MMP activities within the tissue. Here we describe detailed experimental protocols of all abovementioned techniques and provide examples of several sample measurements