7 research outputs found

    LTBK-01. INO-5401 AND INO-9012 DELIVERED INTRAMUSCULARLY (IM) WITH ELECTROPORATION (EP) IN COMBINATION WITH CEMIPLIMAB (REGN2810) IN NEWLY DIAGNOSED GLIOBLASTOMA

    No full text
    Abstract BACKGROUND Novel T cell-enabling therapies, in combination with checkpoint inhibition, may improve OS in GBM. INO-5401 (synthetic DNA plasmids encoding hTERT, WT-1, PSMA) plus INO-9012 (synthetic DNA plasmid encoding IL-12), and the PD-1 immune checkpoint inhibitor cemiplimab, is given to patients with newly diagnosed GBM to evaluate tolerability, efficacy and immunogenicity. METHODS Phase I/II, single arm, 2 cohort study (A: MGMT unmethylated, B: MGMT methylated). Primary endpoint is safety; efficacy and immunogenicity are secondary. Nine mg INO-5401 plus 1 mg INO-9012 (every 3 weeks x 4 doses, then Q9W) is given IM with EP by CELLECTRA® 2000 with cemiplimab (350 mg IV Q3W). RT is given as 40 Gy over 3 weeks. TMZ is given with radiation (all patients), and adjuvantly (Cohort B only). RESULTS Fifty-two subjects enrolled: 32 in Cohort A; 20 in Cohort B. 35% women; median age 60 years (19–78 years). The adverse event profile is consistent with single-agent (INO-5401, INO-9012, EP and cemiplimab) reported events. OS at 12 months was 84.4% (Cohort A) and 85% (Cohort B). OS at 18 months in Cohort A is 50% (95% CI 31.9 - 68.1); median OS is 17.9 months (14.5 - NR); Cohort B OS18 and median OS will be presented. Tumor gene transcripts at diagnosis confirmed expression of INO-5401 antigens. Peripheral immune responses following INO-5401 revealed antigen-specific T cell responses by Interferon gamma ELISpot and flow cytometry, including cytokine production and expansion of antigen specific CD8+T cells with lytic potential. CONCLUSIONS INO-5401 + INO-9012, a novel DNA plasmid immunotherapy, demonstrates acceptable risk/benefit and generates robust systemic immune responses to encoded tumor antigens when administered with cemiplimab and RT/TMZ in newly diagnosed GBM patients. Overall survival is encouraging. Clinical trial information: NCT03491683

    Biobanking in everyday clinical practice in psychiatry—The Munich Mental Health Biobank

    Get PDF
    Translational research on complex, multifactorial mental health disorders, such as bipolar disorder, major depressive disorder, schizophrenia, and substance use disorders requires databases with large-scale, harmonized, and integrated real-world and research data. The Munich Mental Health Biobank (MMHB) is a mental health-specific biobank that was established in 2019 to collect, store, connect, and supply such high-quality phenotypic data and biosamples from patients and study participants, including healthy controls, recruited at the Department of Psychiatry and Psychotherapy (DPP) and the Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital of the Ludwig-Maximilians-University (LMU), Munich, Germany. Participants are asked to complete a questionnaire that assesses sociodemographic and cross-diagnostic clinical information, provide blood samples, and grant access to their existing medical records. The generated data and biosamples are available to both academic and industry researchers. In this manuscript, we outline the workflow and infrastructure of the MMHB, describe the clinical characteristics and representativeness of the sample collected so far, and reveal future plans for expansion and application. As of 31 October 2021, the MMHB contains a continuously growing set of data from 578 patients and 104 healthy controls (46.37% women; median age, 38.31 years). The five most common mental health diagnoses in the MMHB are recurrent depressive disorder (38.78%; ICD-10: F33), alcohol-related disorders (19.88%; ICD-10: F10), schizophrenia (19.69%; ICD-10: F20), depressive episode (15.94%; ICD-10: F32), and personality disorders (13.78%; ICD-10: F60). Compared with the average patient treated at the recruiting hospitals, MMHB participants have significantly more mental health-related contacts, less severe symptoms, and a higher level of functioning. The distribution of diagnoses is also markedly different in MMHB participants compared with individuals who did not participate in the biobank. After establishing the necessary infrastructure and initiating recruitment, the major tasks for the next phase of the MMHB project are to improve the pace of participant enrollment, diversify the sociodemographic and diagnostic characteristics of the sample, and improve the utilization of real-world data generated in routine clinical practice

    Loss of H3K27me3 in meningiomas

    No full text
    BackgroundThere is a critical need for objective and reliable biomarkers of outcome in meningiomas beyond WHO classification. Loss of H3K27me3 has been reported as a prognostically unfavorable alteration in meningiomas. We sought to independently evaluate the reproducibility and prognostic value of H3K27me3 loss by immunohistochemistry (IHC) in a multicenter study.MethodsIHC staining for H3K27me3 and analyses of whole slides from 181 meningiomas across three centers was performed. Staining was analyzed by dichotomization into loss and retained immunoreactivity, and using a 3-tiered scoring system in 151 cases with clear staining. Associations of grouping with outcome were performed using Kaplan-Meier survival estimates.ResultsA total of 21 of 151 tumors (13.9%) demonstrated complete loss of H3K27me3 staining in tumor with retained endothelial staining. Overall, loss of H3K27me3 portended a worse outcome with shorter times to recurrence in our cohort, particularly for WHO grade 2 tumors which were enriched in our study. There were no differences in recurrence-free survival (RFS) for WHO grade 3 patients with retained vs loss of H3K27me3. Scoring by a 3-tiered system did not add further insights into the prognostic value of this H3K27me3 loss. Overall, loss of H3K27me3 was not independently associated with RFS after controlling for WHO grade, extent of resection, sex, age, and recurrence status of tumor on multivariable Cox regression analysis.ConclusionsLoss of H3K27me3 identifies a subset of WHO grade 2 and possibly WHO grade 1 meningiomas with increased recurrence risk. Pooled analyses of a larger cohort of samples with standardized reporting of clinical definitions and staining patterns are warranted

    External validation and recalibration of an incidental meningioma prognostic model - IMPACT: protocol for an international multicentre retrospective cohort study

    No full text
    Introduction: Due to the increased use of CT and MRI, the prevalence of incidental findings on brain scans is increasing. Meningioma, the most common primary brain tumour, is a frequently encountered incidental finding, with an estimated prevalence of 3/1000. The management of incidental meningioma varies widely with active clinical-radiological monitoring being the most accepted method by clinicians. Duration of monitoring and time intervals for assessment, however, are not well defined. To this end, we have recently developed a statistical model of progression risk based on single-centre retrospective data. The model Incidental Meningioma: Prognostic Analysis Using Patient Comorbidity and MRI Tests (IMPACT) employs baseline clinical and imaging features to categorise the patient with an incidental meningioma into one of three risk groups: low, medium and high risk with a proposed active monitoring strategy based on the risk and temporal trajectory of progression, accounting for actuarial life expectancy. The primary aim of this study is to assess the external validity of this model. Methods and analysis: IMPACT is a retrospective multicentre study which will aim to include 1500 patients with an incidental intracranial meningioma, powered to detect a 10% progression risk. Adult patients ≥16 years diagnosed with an incidental meningioma between 1 January 2009 and 31 December 2010 will be included. Clinical and radiological data will be collected longitudinally until the patient reaches one of the study endpoints: intervention (surgery, stereotactic radiosurgery or fractionated radiotherapy), mortality or last date of follow-up. Data will be uploaded to an online Research Electronic Data Capture database with no unique identifiers. External validity of IMPACT will be tested using established statistical methods. Ethics and dissemination: Local institutional approval at each participating centre will be required. Results of the study will be reported through peer-reviewed articles and conferences and disseminated to participating centres, patients and the public using social media

    Literaturverzeichnis

    No full text
    corecore