2 research outputs found

    Effect of Nano Cr2O3 in HTPB/AP/Al Based Composite Propellant Formulations

    Get PDF
    Different compositions have been prepared by incorporating nano sized chromium oxide from 0.25 % to 1 % in HTPB/AP/Al based composite propellant formulation having 86% of solid loading and studied its effect on viscosity build-up, thermal, mechanical and ballistic properties. The findings reveal that on increasing the percentage of nano Cr2O3 in the composition, there is an increase in end of mix viscosity, elastic modulus and tensile strength while elongation decreases accordingly. The data on thermal properties envisage the reduction in thermal decomposition temperature of ammonium perchlorate as well as formulations based on HTPB/AP/Al. The data on ballistic properties reveal that there is an enhancement in burning rate from 6.11 mm/s to 7.88 mm/s at 6.86 MPa, however, marginal increase in  pressure exponent (‘n’ values) from 0.35 to 0.53 with 1 wt % of nano Cr2O3 was observed  in comparison to reference composition without chromium oxide

    Composite Propellant Formulation of Poly (16-, 32- and 64-) Azido Dendritic Esters as Energetic Plasticizer and Evaluation of Properties

    No full text
    16-, 32- and 64-Polyazido hyperbranched dendrimers were synthesized from hydroxy terminated dendritic ester by following two steps namely, tosylation and azidation. The poly azido dendrimers were incorporated in composite propellant formulations as an energetic plasticizer. The physical, thermal sensitivity and ballistic properties of these composite propellants such as burning rate, Cal-val, density, ignition/decomposition temperature (AET), DSC-TGA, mechanical properties, impact and friction sensitivity were evaluated experimentally while the specific impulse (Isp) and characteristic velocity (C*) were obtained theoretically. A significant enhancement in heat release was noted in the propellant formulation having 16-azido dendritic ester as an energetic plasticizer compared to 32- and 64-azido dendritic esters and a reference composition
    corecore