321 research outputs found

    On gradual-impulse control of continuous-time Markov decision processes with multiplicative cost

    Full text link
    In this paper, we consider the gradual-impulse control problem of continuous-time Markov decision processes, where the system performance is measured by the expectation of the exponential utility of the total cost. We prove, under very general conditions on the system primitives, the existence of a deterministic stationary optimal policy out of a more general class of policies. Policies that we consider allow multiple simultaneous impulses, randomized selection of impulses with random effects, relaxed gradual controls, and accumulation of jumps. After characterizing the value function using the optimality equation, we reduce the continuous-time gradual-impulse control problem to an equivalent simple discrete-time Markov decision process, whose action space is the union of the sets of gradual and impulsive actions

    A Study on the Theory of Modern Capitalism

    Get PDF

    A Study of the Theory of Differential Rent (II)

    Get PDF

    Possibility of the magnetic field effect on the thermal decomposition of N2O : Molecular dynamics simulation

    Get PDF
    Molecular dynamics (MD) model calculations for the thermal decomposition of N2O with external magnetic field were performed. The effect of external magnetic field was modeled by parameterization of the interaction term between the singlet and triplet potential surfaces. It was suggested that the increase of the rate constant by external magnetic field could be explained by means of the increase of interaction term which is dependent on the angle of the Jacobi coordinate

    Three New Integration Vectors and Fluorescent Proteins for Use in the Opportunistic Human Pathogen Streptococcus pneumoniae.

    Get PDF
    Here, we describe the creation of three integration vectors, pPEPX, pPEPY and pPEPZ, for use with the opportunistic human pathogen Streptococcus pneumoniae. The constructed vectors, named PEP for Pneumococcal Engineering Platform (PEP), employ an IPTG-inducible promoter and BglBrick and BglFusion compatible multiple cloning sites allowing for fast and interchangeable cloning. PEP plasmids replicate in Escherichia coli and harbor integration sites that have homology in a large set of pneumococcal strains, including recent clinical isolates. In addition, several options of antibiotic resistance markers are available, even allowing for selection in multidrug resistant clinical isolates. The transformation efficiency of these PEP vectors as well as their ability to be expressed simultaneously was tested. Two of the three PEP vectors share homology of the integration regions with over half of the S. pneumoniae genomes examined. Transformation efficiency varied among PEP vectors based on the length of the homology regions, but all were highly transformable and can be integrated simultaneously in strain D39V. Vectors used for pneumococcal cloning are an important tool for researchers for a wide range of uses. The PEP vectors described are of particular use because they have been designed to allow for easy transfer of genes between vectors as well as integrating into transcriptionally silent areas of the chromosome. In addition, we demonstrate the successful production of several new spectrally distinct fluorescent proteins (mTurquoise2, mNeonGreen and mScarlet-I) from the PEP vectors. The PEP vectors and newly described fluorescent proteins will expand the genetic toolbox for pneumococcal researchers and aid future discoveries
    corecore