6 research outputs found

    Broadened assessments, health education and cognitive aids in the remote memory clinic

    Get PDF
    The prevalence of dementia is increasing and poses a health challenge for individuals and society. Despite the desire to know their risks and the importance of initiating early therapeutic options, large parts of the population do not get access to memory clinic-based assessments. Remote memory clinics facilitate low-level access to cognitive assessments by eschewing the need for face-to-face meetings. At the same time, patients with detected impairment or increased risk can receive non-pharmacological treatment remotely. Sensor technology can evaluate the efficiency of this remote treatment and identify cognitive decline. With remote and (partly) automatized technology the process of cognitive decline can be monitored but more importantly also modified by guiding early interventions and a dementia preventative lifestyle. We highlight how sensor technology aids the expansion of assessments beyond cognition and to other domains, e.g., depression. We also illustrate applications for aiding remote treatment and describe how remote tools can facilitate health education which is the cornerstone for long-lasting lifestyle changes. Tools such as transcranial electric stimulation or sleep-based interventions have currently mostly been used in a face-to-face context but have the potential of remote deployment—a step already taken with memory training apps. Many of the presented methods are readily scalable and of low costs and there is a range of target populations, from the worried well to late-stage dementia

    Digital endpoints in clinical trials of Alzheimer's disease and other neurodegenerative diseases: challenges and opportunities.

    Get PDF
    Alzheimer's disease (AD) and other neurodegenerative diseases such as Parkinson's disease (PD) and Huntington's disease (HD) are associated with progressive cognitive, motor, affective and consequently functional decline considerably affecting Activities of Daily Living (ADL) and quality of life. Standard assessments, such as questionnaires and interviews, cognitive testing, and mobility assessments, lack sensitivity, especially in early stages of neurodegenerative diseases and in the disease progression, and have therefore a limited utility as outcome measurements in clinical trials. Major advances in the last decade in digital technologies have opened a window of opportunity to introduce digital endpoints into clinical trials that can reform the assessment and tracking of neurodegenerative symptoms. The Innovative Health Initiative (IMI)-funded projects RADAR-AD (Remote assessment of disease and relapse-Alzheimer's disease), IDEA-FAST (Identifying digital endpoints to assess fatigue, sleep and ADL in neurodegenerative disorders and immune-mediated inflammatory diseases) and Mobilise-D (Connecting digital mobility assessment to clinical outcomes for regulatory and clinical endorsement) aim to identify digital endpoints relevant for neurodegenerative diseases that provide reliable, objective, and sensitive evaluation of disability and health-related quality of life. In this article, we will draw from the findings and experiences of the different IMI projects in discussing (1) the value of remote technologies to assess neurodegenerative diseases; (2) feasibility, acceptability and usability of digital assessments; (3) challenges related to the use of digital tools; (4) public involvement and the implementation of patient advisory boards; (5) regulatory learnings; and (6) the significance of inter-project exchange and data- and algorithm-sharing

    Feasibility and usability of remote monitoring in Alzheimer’s disease

    Get PDF
    Introduction: Remote monitoring technologies (RMTs) can measure cognitive and functional decline objectively at-home, and offer opportunities to measure passively and continuously, possibly improving sensitivity and reducing participant burden in clinical trials. However, there is skepticism that age and cognitive or functional impairment may render participants unable or unwilling to comply with complex RMT protocols. We therefore assessed the feasibility and usability of a complex RMT protocol in all syndromic stages of Alzheimer’s disease and in healthy control participants.Methods: For 8 weeks, participants (N=229) used two activity trackers, two interactive apps with either daily or weekly cognitive tasks, and optionally a wearable camera. A subset of participants participated in a 4-week sub-study (N=45) using fixed at-home sensors, a wearable EEG sleep headband and a driving performance device. Feasibility was assessed by evaluating compliance and drop-out rates. Usability was assessed by problem rates (e.g., understanding instructions, discomfort, forgetting to use the RMT or technical problems) as discussed during bi-weekly semi-structured interviews.Results: Most problems were found for the active apps and EEG sleep headband. Problem rates increased and compliance rates decreased with disease severity, but the study remained feasible.Conclusions: This study shows that a highly complex RMT protocol is feasible, even in a mild-to-moderate AD population, encouraging other researchers to use RMTs in their study designs. We recommend evaluating the design of individual devices carefully before finalizing study protocols, considering RMTs which allow for real-time compliance monitoring, and engaging the partners of study participants in the research.<br/

    Digital endpoints in clinical trials of Alzheimer’s disease and other neurodegenerative diseases: challenges and opportunities

    Get PDF
    Alzheimer’s disease (AD) and other neurodegenerative diseases such as Parkinson’s disease (PD) and Huntington’s disease (HD) are associated with progressive cognitive, motor, affective and consequently functional decline considerably affecting Activities of Daily Living (ADL) and quality of life. Standard assessments, such as questionnaires and interviews, cognitive testing, and mobility assessments, lack sensitivity, especially in early stages of neurodegenerative diseases and in the disease progression, and have therefore a limited utility as outcome measurements in clinical trials. Major advances in the last decade in digital technologies have opened a window of opportunity to introduce digital endpoints into clinical trials that can reform the assessment and tracking of neurodegenerative symptoms. The Innovative Health Initiative (IMI)-funded projects RADAR-AD (Remote assessment of disease and relapse—Alzheimer’s disease), IDEA-FAST (Identifying digital endpoints to assess fatigue, sleep and ADL in neurodegenerative disorders and immune-mediated inflammatory diseases) and Mobilise-D (Connecting digital mobility assessment to clinical outcomes for regulatory and clinical endorsement) aim to identify digital endpoints relevant for neurodegenerative diseases that provide reliable, objective, and sensitive evaluation of disability and health-related quality of life. In this article, we will draw from the findings and experiences of the different IMI projects in discussing (1) the value of remote technologies to assess neurodegenerative diseases; (2) feasibility, acceptability and usability of digital assessments; (3) challenges related to the use of digital tools; (4) public involvement and the implementation of patient advisory boards; (5) regulatory learnings; and (6) the significance of inter-project exchange and data- and algorithm-sharing

    Broadened assessments, health education and cognitive aids in the remote memory clinic

    No full text
    The prevalence of dementia is increasing and poses a health challenge for individuals and society. Despite the desire to know their risks and the importance of initiating early therapeutic options, large parts of the population do not get access to memory clinic-based assessments. Remote memory clinics facilitate low-level access to cognitive assessments by eschewing the need for face-to-face meetings. At the same time, patients with detected impairment or increased risk can receive non-pharmacological treatment remotely. Sensor technology can evaluate the efficiency of this remote treatment and identify cognitive decline. With remote and (partly) automatized technology the process of cognitive decline can be monitored but more importantly also modified by guiding early interventions and a dementia preventative lifestyle. We highlight how sensor technology aids the expansion of assessments beyond cognition and to other domains, e.g., depression. We also illustrate applications for aiding remote treatment and describe how remote tools can facilitate health education which is the cornerstone for long-lasting lifestyle changes. Tools such as transcranial electric stimulation or sleep-based interventions have currently mostly been used in a face-to-face context but have the potential of remote deployment—a step already taken with memory training apps. Many of the presented methods are readily scalable and of low costs and there is a range of target populations, from the worried well to late-stage dementia.ISSN:2296-256
    corecore