2 research outputs found

    H‑Bonding Organocatalysts for the Living, Solvent-Free Ring-Opening Polymerization of Lactones: Toward an All-Lactones, All-Conditions Approach

    No full text
    The developing urea class of H-bond donors facilitates the solvent-free ROP of lactones at ambient and elevated temperatures, displaying enhanced rates and control versus other known organocatalysts for ROP under solvent-free conditions. The ROPs retain the characteristics of living polymerizations despite solidifying prior to full conversion, and copolymers can be accessed in a variety of architectures. One-pot block copolymerizations of lactide and valerolactone, which had previously been inaccessible in solution phase organocatalytic ROP, can be achieved under these reaction conditions, and one-pot triblock copolymers are also synthesized. For the ROP of lactide, however, thioureas remain the more effective H-bond donating class. For all (thio)­urea catalysts under solvent-free conditions and in solution, the more active catalysts are generally more controlled. A rationale for these observations is proposed. The triclocarban (TCC) plus base systems are particularly attractive in the context of solvent-free ROP due to their commercial availability which could facilitate the adoption of these catalysts

    Bis- and Tris-Urea H‑Bond Donors for Ring-Opening Polymerization: Unprecedented Activity and Control from an Organocatalyst

    No full text
    A new class of H-bond donating ureas was developed for the ring-opening polymerization (ROP) of lactone monomers, and they exhibit dramatic rate acceleration versus previous H-bond mediated polymerization catalysts. The most active of these new catalysts, a tris-urea H-bond donor, is among the most active organocatalysts known for ROP, yet it retains the high selectivity of H-bond mediated organocatalysts. The urea cocatalyst, along with an H-bond accepting base, exhibits the characteristics of a “living” ROP, is highly active, in one case, accelerating a reaction from days to minutes, and remains active at low catalyst loadings. The rate acceleration exhibited by this H-bond donor occurs for all base cocatalysts examined. A mechanism of action is proposed, and the new catalysts are shown to accelerate small molecule transesterifications versus currently known monothiourea catalysts. It is no longer necessary to choose between a highly active or highly selective organocatalyst for ROP
    corecore