23 research outputs found

    The liver pharmacological and xenobiotic gene response repertoire

    Get PDF
    We have used a supervised classification approach to systematically mine a large microarray database derived from livers of compound-treated rats. Thirty-four distinct signatures (classifiers) for pharmacological and toxicological end points can be identified. Just 200 genes are sufficient to classify these end points. Signatures were enriched in xenobiotic and immune response genes and contain un-annotated genes, indicating that not all key genes in the liver xenobiotic responses have been characterized. Many signatures with equal classification capabilities but with no gene in common can be derived for the same phenotypic end point. The analysis of the union of all genes present in these signatures can reveal the underlying biology of that end point as illustrated here using liver fibrosis signatures. Our approach using the whole genome and a diverse set of compounds allows a comprehensive view of most pharmacological and toxicological questions and is applicable to other situations such as disease and development

    Use of a mixed tissue RNA design for performance assessments on multiple microarray formats

    Get PDF
    The comparability and reliability of data generated using microarray technology would be enhanced by use of a common set of standards that allow accuracy, reproducibility and dynamic range assessments on multiple formats. We designed and tested a complex biological reagent for performance measurements on three commercial oligonucleotide array formats that differ in probe design and signal measurement methodology. The reagent is a set of two mixtures with different proportions of RNA for each of four rat tissues (brain, liver, kidney and testes). The design provides four known ratio measurements of >200 reference probes, which were chosen for their tissue-selectivity, dynamic range coverage and alignment to the same exemplar transcript sequence across all three platforms. The data generated from testing three biological replicates of the reagent at eight laboratories on three array formats provides a benchmark set for both laboratory and data processing performance assessments. Close agreement with target ratios adjusted for sample complexity was achieved on all platforms and low variance was observed among platforms, replicates and sites. The mixed tissue design produces a reagent with known gene expression changes within a complex sample and can serve as a paradigm for performance standards for microarrays that target other species

    Na +

    No full text
    corecore