15 research outputs found

    Two-loop O(GF2MH4){\rm O}\left(G_F^2M_H^4\right) corrections to the fermionic decay rates of the Higgs boson

    Full text link
    We calculate the dominant O(GF2MH4){\rm O}\left(G_F^2M_H^4\right) two-loop electroweak corrections to the fermi\-onic decay widths of a heavy Higgs boson in the Standard Model. Use of the Goldstone-boson equivalence theorem reduces the problem to one involving only the physical Higgs boson HH and the Goldstone bosons w±w^\pm and zz of the unbroken theory. The two-loop corrections are opposite in sign to the one-loop electroweak corrections, exceed the one-loop corrections in magnitude for MH>1114 GeVM_H>1114\ {\rm GeV}, and increase in relative magnitude as MH2M_H^2 for larger values of MHM_H. We conclude that the perturbation expansion in powers of GFMH2G_FM_H^2 breaks down for MH1100 GeVM_H\approx 1100\ {\rm GeV}. We discuss briefly the QCD and the complete one-loop electroweak corrections to Hbbˉ,ttˉH\rightarrow b\bar{b}, \,t\bar{t}, and comment on the validity of the equivalence theorem. Finally we note how a very heavy Higgs boson could be described in a phenomenological manner.Comment: 24 pages, RevTeX file, 4 figures in a separate compressed uuencoded Postscript file or available by mail on request. Fig. 1 not included see Figs. 1, 2 in Phys. Rev. D 48, 1061 (1993

    Coordinated regulation of platelet actin filament barbed ends by gelsolin and capping protein

    No full text
    Abstract. Exposure of cryptic actin filament fast growing ends (barbed ends) initiates actin polymerization in stimulated human and mouse platelets. Gelsolin amplifies platelet actin assembly by severing F-actin and increasing the number of barbed ends. Actin filaments in stimulated platelets from transgenic gelsolin-null mice elongate their actin without severing. F-actin barbed end capping activity persists in human platelet extracts, depleted of gelsolin, and the heterodimeric capping protein (CP) accounts for this residual activity. 35 % of the ~5 ~M CP is associated with the insoluble actin cytoskeleton of the resting platelet. Since resting platelets have an F-actin barbed end concentration of N0.5 IxM, sufficient CP is bound to cap these ends. CP is released from OG-permeabilized platelets by treatment wit

    A genetic locus in the gut microbe Bacteroides thetaiotaomicron encodes activities consistent with mucin-O-glycoprotein processing and plays a critical role in N-acetylgalactosamine metabolism

    No full text
    It is increasingly appreciated that members of the gut microbiota are key modulators of human health and the status of major diseases including cancer, diabetes and inflammatory bowel disease. Central to their survival is the ability to metabolise complex dietary and host-derived glycans including intestinal mucins. The latter are critical components of the gut epithelium glycocalyx and mucus barriers, essential for microbiota-gut homeostasis and protection from infections by pathogens. The prominent and model human gut microbe Bacteroides thetaiotaomicron (B. theta) is a versatile and highly efficient complex glycan degrader thanks to the expansion of gene clusters termed polysaccharide utilisation loci (PULs) in its genome. While the mechanisms for several singular dietary glycan-induced PULs have been elucidated, studies on the 16-18 mucin-induced PULs in B. theta significantly lag behind. A combination of the scale and complexity of B. theta transcriptomic response to mucins and complex glycan configurations of mucins represent major hurdles for the functional characterisation of the mucin induced PULs. As a result, there is very limited knowledge on how mucin metabolism is coordinated in B. theta and what specific PULs, genes and metabolites are critical for mucin-B. theta, and more generally mucin-microbiota interactions and their importance in microbiota-gut homeostasis. Here we show that a mucin inducible PUL BT4240-50, (i) encodes activities consistent with a machinery that couples the processing of mucin-O glycan glycoproteins with the metabolism of N-acetylgalactosamine (GalNAc), an abundant mucin O-glycan sugar; (ii) is important for competitive growth on mucins in-vitro; (iii) encodes a key kinase enzyme (BT4240) that is critical for GalNAc metabolism and (iv) has related PULs encoded by a range of prominent Bacteroides species in the human gut. Furthermore, BT4240 kinase was also critical for glycosaminoglycan metabolism, thus extending the PULs function beyond mucins. Our work advances our understanding of the vital metabolic processes that govern mucosal glycoprotein metabolism and by implication, a key aspect of host-microbiota interactions at mucosal surfaces and highlight GalNAc as a key metabolite targeted for competitive growth

    A polysaccharide utilization locus from Flavobacterium johnsoniae enables conversion of recalcitrant chitin

    Get PDF
    Chitin is the second most abundant polysaccharide on earth and as such a great target for bioconversion applications. The phylum Bacteroidetes is one of nature’s most ubiquitous bacterial lineages and is essential in the global carbon cycle with many members being highly efficient degraders of complex carbohydrates. However, despite their specialist reputation in carbohydrate conversion, mechanisms for degrading recalcitrant crystalline polysaccharides such as chitin and cellulose are hitherto unknown.ResultsHere we describe a complete functional analysis of a novel polysaccharide utilization locus (PUL) in the soil Bacteroidete Flavobacterium johnsoniae, tailored for conversion of chitin. The F. johnsoniae chitin utilization locus (ChiUL) consists of eleven contiguous genes encoding carbohydrate capture and transport proteins, enzymes, and a two-component sensor–regulator system. The key chitinase (ChiA) encoded by ChiUL is atypical in terms of known Bacteroidetes-affiliated PUL mechanisms as it is not anchored to the outer cell membrane and consists of multiple catalytic domains. We demonstrate how the extraordinary hydrolytic efficiency of ChiA derives from synergy between its multiple chitinolytic (endo- and exo-acting) and previously unidentified chitin-binding domains. Reverse genetics show that ChiA and PUL-encoded proteins involved in sugar binding, import, and chitin sensing are essential for efficient chitin utilization. Surprisingly, the ChiUL encodes two pairs of SusC/D-like outer membrane proteins. Ligand-binding and structural studies revealed functional differences between the two SusD-like proteins that enhance scavenging of chitin from the environment. The combined results from this study provide insight into the mechanisms employed by Bacteroidetes to degrade recalcitrant polysaccharides and reveal important novel aspects of the PUL paradigm.ConclusionsBy combining reverse genetics to map essential PUL genes, structural studies on outer membrane chitin-binding proteins, and enzymology, we provide insight into the mechanisms employed by Bacteroidetes to degrade recalcitrant polysaccharides and introduce a new saccharolytic mechanism used by the phylum Bacteroidetes. The presented discovery and analysis of the ChiUL will greatly benefit future enzyme discovery efforts as well as studies regarding enzymatic intramolecular synergism

    Molecular Dissection of Xyloglucan Recognition in a Prominent Human Gut Symbiont

    No full text
    Polysaccharide utilization loci (PUL) within the genomes of resident human gut Bacteroidetes are central to the metabolism of the otherwise indigestible complex carbohydrates known as "dietary fiber." However, functional characterization of PUL lags significantly behind sequencing efforts, which limits physiological understanding of the human-bacterial symbiosis. In particular, the molecular basis of complex polysaccharide recognition, an essential prerequisite to hydrolysis by cell surface glycosidases and subsequent metabolism, is generally poorly understood. Here, we present the biochemical, structural, and reverse genetic characterization of two unique cell surface glycan-binding proteins (SGBPs) encoded by a xyloglucan utilization locus (XyGUL) from Bacteroides ovatus, which are integral to growth on this key dietary vegetable polysaccharide. Biochemical analysis reveals that these outer membrane-anchored proteins are in fact exquisitely specific for the highly branched xyloglucan (XyG) polysaccharide. The crystal structure of SGBP-A, a SusD homolog, with a bound XyG tetradecasaccharide reveals an extended carbohydrate-binding platform that primarily relies on recognition of the beta-glucan backbone. The unique, tetra-modular structure of SGBP-B is comprised of tandem Ig-like folds, with XyG binding mediated at the distal C-terminal domain. Despite displaying similar affinities for XyG, reverse-genetic analysis reveals that SGBP-B is only required for the efficient capture of smaller oligosaccharides, whereas the presence of SGBP-A is more critical than its carbohydrate-binding ability for growth on XyG. Together, these data demonstrate that SGBP-A and SGBP-B play complementary, specialized roles in carbohydrate capture by B. ovatus and elaborate a model of how vegetable xyloglucans are accessed by the Bacteroidetes. IMPORTANCE The Bacteroidetes are dominant bacteria in the human gut that are responsible for the digestion of the complex polysaccharides that constitute "dietary fiber." Although this symbiotic relationship has been appreciated for decades, little is currently known about how Bacteroidetes seek out and bind plant cell wall polysaccharides as a necessary first step in their metabolism. Here, we provide the first biochemical, crystallographic, and genetic insight into how two surface glycan-binding proteins from the complex Bacteroides ovatus xyloglucan utilization locus (XyGUL) enable recognition and uptake of this ubiquitous vegetable polysaccharide. Our combined analysis illuminates new fundamental aspects of complex polysaccharide recognition, cleavage, and import at the Bacteroidetes cell surface that may facilitate the development of prebiotics to target this phylum of gut bacteria
    corecore