6 research outputs found

    Consumer wearable devices for evaluation of heart rate control using digoxin versus beta-blockers: the RATE-AF randomized trial

    Get PDF
    Consumer-grade wearable technology has the potential to support clinical research and patient management. Here, we report results from the RATE-AF trial wearables study, which was designed to compare heart rate in older, multimorbid patients with permanent atrial fibrillation and heart failure who were randomized to treatment with either digoxin or beta-blockers. Heart rate (n = 143,379,796) and physical activity (n = 23,704,307) intervals were obtained from 53 participants (mean age 75.6 years (s.d. 8.4), 40% women) using a wrist-worn wearable linked to a smartphone for 20 weeks. Heart rates in participants treated with digoxin versus beta-blockers were not significantly different (regression coefficient 1.22 (95% confidence interval (CI) −2.82 to 5.27; P = 0.55); adjusted 0.66 (95% CI −3.45 to 4.77; P = 0.75)). No difference in heart rate was observed between the two groups of patients after accounting for physical activity (P = 0.74) or patients with high activity levels (≥30,000 steps per week; P = 0.97). Using a convolutional neural network designed to account for missing data, we found that wearable device data could predict New York Heart Association functional class 5 months after baseline assessment similarly to standard clinical measures of electrocardiographic heart rate and 6-minute walk test (F1 score 0.56 (95% CI 0.41 to 0.70) versus 0.55 (95% CI 0.41 to 0.68); P = 0.88 for comparison). The results of this study indicate that digoxin and beta-blockers have equivalent effects on heart rate in atrial fibrillation at rest and on exertion, and suggest that dynamic monitoring of individuals with arrhythmia using wearable technology could be an alternative to in-person assessment. ClinicalTrials.gov identifier: NCT02391337

    The Role of Munc18-1 and Its Orthologs in Modulation of Cortical F-Actin in Chromaffin Cells

    Get PDF
    Munc18-1 was originally described as an essential docking factor in chromaffin cells. Recent findings showed that Munc18-1 has an additional role in the regulation of the cortical F-actin network, which is thought to function as a physical barrier preventing secretory vesicles from access to their release sites under resting conditions. In our review, we discuss whether this function is evolutionarily conserved in all Sec1/ Munc18-like (SM) proteins. In addition, we introduce a new quantification method that improves the analysis of cortical filamentous actin (F-actin) in comparison with existing methods. Since the docking process is highly evolutionarily conserved in the SM protein superfamily, we use our novel quantification method to investigate whether the F-actin-regulating function is similarly conserved among SM proteins. Our preliminary data suggest that the regulation of cortical F-actin is a shared function of SM proteins, and we propose a way to gain more insight in the molecular mechanism underlying the Munc18-1-mediated cortical F-actin regulation. © Springer Science+Business Media, LLC 2012

    Quantitative image analysis tool to study the plasma membrane localization of proteins and cortical actin in neuroendocrine cells.

    No full text
    Item does not contain fulltextBACKGROUND: Adrenal chromaffin cells are a widely used model system to study regulated exocytosis and other membrane-associated processes. Alterations in the amount and localization of the proteins involved in these processes can be visualized with fluorescent probes that report the effect of different stimuli or genetic modifications. However, the quantitative analysis of such images remains difficult, especially when focused on specific locations, such as the plasma membrane. NEW METHOD: We developed an image analysis algorithm, named plasma membrane analysis in chromaffin cells (PlasMACC). PlasMACC enables automatic detection of the plasma membrane region and quantitative analysis of multi-fluorescent signals from spherical cells. PlasMACC runs in the image analysis software ImageJ environment, it is user-friendly and freely available. RESULTS: PlasMACC delivers detailed information about intensity, thickness and density of fluorescent signals at the plasma membrane of both living and fixed cells. Individual signals can be compared between cells and different signals within one cell can be correlated. PlasMACC can process conventional laser-scanning confocal images as well as data obtained by super-resolution methods such as structured illumination microscopy. COMPARISON WITH EXISTING METHOD(S): By comparing PlasMACC to methods currently used in the field, we show more consistent quantitative data due to the fully automated algorithm. PlasMACC also provides an expanded set of novel analysis parameters. CONCLUSION: PlasMACC enables a detailed quantification of fluorescent signals at the plasma membrane of spherical cells in an unbiased and reliable fashion

    The SNARE protein vti1a functions in dense-core vesicle biogenesis

    No full text
    The SNARE protein vti1a is proposed to drive fusion of intracellular organelles, but recent data also implicated vti1a in exocytosis. Here we show that vti1a is absent from mature secretory vesicles in adrenal chromaffin cells, but localizes to a compartment near the trans-Golgi network, partially overlapping with syntaxin-6. Exocytosis is impaired in vti1a null cells, partly due to fewer C
    corecore