68 research outputs found
A Genome-Wide Association Study of the Protein C Anticoagulant Pathway
The Protein C anticoagulant pathway regulates blood coagulation by preventing the inadequate formation of thrombi. It has two main plasma components: protein C and protein S. Individuals with protein C or protein S deficiency present a dramatically increased incidence of thromboembolic disorders. Here, we present the results of a genome-wide association study (GWAS) for protein C and protein S plasma levels in a set of extended pedigrees from the Genetic Analysis of Idiopathic Thrombophilia (GAIT) Project. A total number of 397 individuals from 21 families were typed for 307,984 SNPs using the Infinium® 317 k Beadchip (Illumina). Protein C and protein S (free, functional and total) plasma levels were determined with biochemical assays for all participants. Association with phenotypes was investigated through variance component analysis. After correcting for multiple testing, two SNPs for protein C plasma levels (rs867186 and rs8119351) and another two for free protein S plasma levels (rs1413885 and rs1570868) remained significant on a genome-wide level, located in and around the PROCR and the DNAJC6 genomic regions respectively. No SNPs were significantly associated with functional or total protein S plasma levels, although rs1413885 from DNAJC6 showed suggestive association with the functional protein S phenotype, possibly indicating that this locus plays an important role in protein S metabolism. Our results provide evidence that PROCR and DNAJC6 might play a role in protein C and free protein S plasma levels in the population studied, warranting further investigation on the role of these loci in the etiology of venous thromboembolism and other thrombotic diseases
Inhibition of Melanoma Growth by Subcutaneous Administration of hTERTC27 Viral Cocktail in C57BL/6 Mice
hTERTC27 is a 27 kDa C-terminal polypeptide of human telomerase reverse transcriptase that has previously been shown to reduce tumorigenicity of HeLa cells and suppress growth of xenografted glioblastoma in nude mice. Although ectopic expression of hTERTC27 upregulated genes that are involved in apoptosis, cell cycle, and immune response, the mechanism for hTERTC27-induced tumor suppression has not been completely elucidated. Since hTERT was identified as a universal tumor-associated antigen, we hypothesize that hTERTC27 inhibits tumor growth in vivo through activation of anti-tumor immune response. Immunocompetent C57BL/6 mice were used for mouse B16 melanoma model. Mice bearing B16 melanoma were administered rAAV-/rAdv viral cocktail expressing hTERTC27, and tumor growth was monitored after viral cocktail treatment. Blood and splenocytes were used to determine the level of cytokines and the activity of immune cells, respectively. B16 tumor growth was significantly inhibited by subcutaneous administration of a single dose of 1.5×10(11) vg rAAV-hTERTC27 and 2.5×10(9) pfu rAdv-hTERTC27 viral cocktail (rAAV-/rAdv-hTERTC27). The population and cytotoxicity of NK cells in the mice were significantly augmented by rAAV-/rAdv-hTERTC27 treatment, and selective depletion of the NK cell population in mice by intraperitoneal injection of anti-GM1 antibody abrogated the growth suppression of melanoma induced by rAAV-/rAdv-hTERTC27 administration. Activation of NK cells by administration of rAAV-/rAdv-hTERTC27 is critical for growth suppression of melanoma in mouse model.published_or_final_versio
Bacillus anthracis Peptidoglycan Stimulates an Inflammatory Response in Monocytes through the p38 Mitogen-Activated Protein Kinase Pathway
We hypothesized that the peptidoglycan component of B. anthracis may play a critical role in morbidity and mortality associated with inhalation anthrax. To explore this issue, we purified the peptidoglycan component of the bacterial cell wall and studied the response of human peripheral blood cells. The purified B. anthracis peptidoglycan was free of non-covalently bound protein but contained a complex set of amino acids probably arising from the stem peptide. The peptidoglycan contained a polysaccharide that was removed by mild acid treatment, and the biological activity remained with the peptidoglycan and not the polysaccharide. The biological activity of the peptidoglycan was sensitive to lysozyme but not other hydrolytic enzymes, showing that the activity resides in the peptidoglycan component and not bacterial DNA, RNA or protein. B. anthracis peptidoglycan stimulated monocytes to produce primarily TNFα; neutrophils and lymphocytes did not respond. Peptidoglycan stimulated monocyte p38 mitogen-activated protein kinase and p38 activity was required for TNFα production by the cells. We conclude that peptidoglycan in B. anthracis is biologically active, that it stimulates a proinflammatory response in monocytes, and uses the p38 kinase signal transduction pathway to do so. Given the high bacterial burden in pulmonary anthrax, these findings suggest that the inflammatory events associated with peptidoglycan may play an important role in anthrax pathogenesis
Comparative and Functional Genomics of Rhodococcus opacus PD630 for Biofuels Development
The Actinomycetales bacteria Rhodococcus opacus PD630 and Rhodococcus jostii RHA1 bioconvert a diverse range of organic substrates through lipid biosynthesis into large quantities of energy-rich triacylglycerols (TAGs). To describe the genetic basis of the Rhodococcus oleaginous metabolism, we sequenced and performed comparative analysis of the 9.27 Mb R. opacus PD630 genome. Metabolic-reconstruction assigned 2017 enzymatic reactions to the 8632 R. opacus PD630 genes we identified. Of these, 261 genes were implicated in the R. opacus PD630 TAGs cycle by metabolic reconstruction and gene family analysis. Rhodococcus synthesizes uncommon straight-chain odd-carbon fatty acids in high abundance and stores them as TAGs. We have identified these to be pentadecanoic, heptadecanoic, and cis-heptadecenoic acids. To identify bioconversion pathways, we screened R. opacus PD630, R. jostii RHA1, Ralstonia eutropha H16, and C. glutamicum 13032 for growth on 190 compounds. The results of the catabolic screen, phylogenetic analysis of the TAGs cycle enzymes, and metabolic product characterizations were integrated into a working model of prokaryotic oleaginy.Cambridge-MIT InstituteMassachusetts Institute of Technology. (Seed Grant program)Shell Oil CompanyNational Institute of Allergy and Infectious Diseases (U.S.)United States. National Institutes of HealthNational Institutes of Health. Department of Health and Human Services (Contract No. HHSN272200900006C
Habitat selection by an avian top predator in the tropical megacity of Delhi: human activities and socio-religious practices as prey-facilitating tools
Research in urban ecology is growing rapidly in response to the exponential growth of the urban environment. However, few studies have focused on tropical megacities, and on the interplay between predators’ habitat selection and human socio-economic aspects, which may mediate their resilience and coexistence with humans. We examined mechanisms of breeding habitat selection by a synanthropic raptor, the Black Kite Milvus migrans, in Delhi (India) where kites mainly subsist on: (1) human refuse and its associated prey-fauna, and (2) ritualised feeding of kites, particularly practised by Muslims. We used mixed effects models to test the effect of urban habitat configuration and human practices on habitat selection, site occupancy and breeding success. Kite habitat decisions, territory occupancy and breeding success were tightly enmeshed with human activities: kites preferred areas with high human density, poor waste management and a road configuration that facilitated better access to resources provided by humans, in particular to Muslim colonies that provided ritual subsidies. Furthermore, kites bred at ‘clean’ sites with less human refuse only when close to Muslim colonies, suggesting that the proximity to ritual-feeding sites modulated the suitability of other habitats. Rather than a nuisance to avoid, as previously portrayed, humans were a keenly-targeted foraging resource, which tied a predator’s distribution to human activities, politics, history, socio-economics and urban planning at multiple spatio-temporal scales. Many synurbic species may exploit humans in more subtle and direct ways than was previously assumed, but uncovering them will require greater integration of human socio-cultural estimates in urban ecological research
Enhancement of impact heating in pressure-strengthened rocks in oblique impacts
Shock‐induced metamorphism in meteorites informs us about the collisional environment and history of our solar system. Recently, the importance of material strength in impact heating was reported from head‐on impact simulations. Here, we perform three‐dimensional oblique impact simulations and confirm the additional heating due to material strength for oblique impacts. Despite a large difference in the peak pressure at the impact point at a given impact velocity, we find that the heated mass for an oblique impact is nearly the same as that for a head‐on impact. Thus, our results differ from the previous finding that the heated mass decreases as the impact becomes more oblique and show that the additional shear heating is more effective for oblique impacts than for head‐on impacts. This also indicates that material ejected during oblique impact tends to experience lower shock pressures but higher temperatures
- …