1,017 research outputs found

    Field-induced staggered magnetic moment in the quasi-two-dimensional organic Mott insulator κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Cl

    Full text link
    We investigated the magnetism under a magnetic field in the quasi-two-dimensional organic Mott insulator κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Cl through magnetization and 13^{13}C-NMR measurements. We found that in the nominally paramagnetic phase (i.e., above N\'eel temperature) the field-induced local moments have a staggered component perpendicular to the applied field. As a result, the antiferromagnetic transition well defined at a zero field becomes crossover under a finite field. This unconventional behavior is qualitatively reproduced by the molecular-field calculation for Hamiltonian including the exchange, Dzyaloshinsky-Moriya (DM), and Zeeman interactions. This calculation also explains other unconventional magnetic features in κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Cl reported in the literature. The present results highlight the importance of the DM interaction in field-induced magnetism in a nominally paramagnetic phase, especially in low-dimensional spin systems.Comment: 11 pages, 12 figures, selected for Editors' Suggestion

    Effect of grain size on thermoelectric properties of n-type nanocrystalline bismuth-telluride based thin films

    Get PDF
    The effect of grain size on the thermoelectric properties of n-type nanocrystalline bismuth-telluridebased thin films is investigated. We prepare the nanocrystalline thin films with average grain sizesof 10, 27, and 60 nm by a flash-evaporation method followed by a hydrogen annealing process. Thethermoelectric properties, in terms of the thermal conductivity by a differential 3 method, theelectrical conductivity, and the Seebeck coefficient are measured at room temperature and used toevaluate the figure of merit. The minimum thermal conductivity is 0.61 W m−1 K−1 at the averagegrain size of 10 nm. We also estimate the lattice thermal conductivity of the nanocrystalline thinfilms and compare it with a simplified theory of phonon scattering on grain boundaries. Fornanosized grains, the lattice thermal conductivity of nanocrystalline thin films decreases rapidly forsmaller grains, corresponding to the theoretical calculation. The figure of merit is also decreased asthe grain size decreases, which is attributed to the increased number of defects at the grainboundaries

    Mott Transition from a Spin Liquid to a Fermi Liquid in the Spin-Frustrated Organic Conductor kappa-(ET)2Cu2(CN)3

    Full text link
    Pressure-temperature phase diagram of the organic Mott insulator κ\kappa-(ET)2_2Cu2_2(CN)3_3, a model system of the spin liquid on triangular lattice, has been investigated by 1^1H NMR and resistivity measurements. The spin-liquid phase is persistent before the Mott transition to the metal or superconducting phase under pressure. At the Mott transition, the spin fluctuations are rapidly suppressed and the Fermi-liquid features are observed in the temperature dependence of the spin-lattice relaxation rate and resistivity. The characteristic curvature of Mott boundary in the phase diagram highlights a crucial effect of the spin frustration on the Mott transition.Comment: 4 pages, 5 figure

    Spin-Wave Theory of the Multiple-Spin Exchange Model on a Triangular Lattice in a Magnetic Field : 3-Sublattice Structures

    Full text link
    We study the spin wave in the S=1/2 multiple-spin exchange model on a triangular lattice in a magnetic field within the linear spin-wave theory. We take only two-, three- and four-spin exchange interactions into account and restrict ourselves to the region where a coplanar three-sublattice state is the mean-field ground state. We found that the Y-shape ground state survives quantum fluctuations and the phase transition to a phase with a 6-sublattice structure occurs with softening of the spin wave. We estimated the quantum corrections to the ground state sublattice magnetizations due to zero-point spin-wave fluctuations.Comment: 8 pages, 20 figure

    Telerobotics test bed for space structure assembly

    Get PDF
    A cooperative research on super long distance space telerobotics is now in progress both in Japan and USA. In this program. several key features will be tested, which can be applicable to the control of space robots as well as to terrestrial robots. Local (control) and remote (work) sites will be shared between Electrotechnical Lab (ETL) of MITI in Japan and Jet Propulsion Lab (JPL) in USA. The details of a test bed for this international program are discussed in this report

    Ikaros has a crucial role in regulation of B cell receptor signaling

    Get PDF
    transcription factor Ikaros, a key regulator of hematopoiesis, has an essential role in lymphocyte development. In mice, fetal lymphoid differentiation is blocked in the absence of Ikaros, and whereas T cells develop postnatally, B cells are totally absent. The significance of Ikaros in the B cell development is evident, but how Ikaros regulates B cell function has neither been established nor previously been studied with B cells that lack Ikaros expression. Here we show that disruption of Ikaros in the chicken B cell line DT40 induces a B cell receptor (BCR) signaling defect with reduced phospholipase C gamma 2 phosphorylation and impaired intracellular calcium mobilization, which is restored by Ikaros reintroduction. Furthermore, we show that lack of Ikaros induces hyperphosphorylation of Casitas B lymphoma protein subsequent to BCR activation. These results indicate that the absolute need of Ikaros for development, cell fate decisions and maintenance of B cells is due to the enhancement of BCR signaling

    Wet and dry deposition of mineral dust particles in Japan: factors related to temporal variation and spatial distribution

    Get PDF
    Recent ground networks and satellite remote-sensing observations have provided useful data related to spatial and vertical distributions of mineral dust particles in the atmosphere. However, measurements of temporal variations and spatial distributions of mineral dust deposition fluxes are limited in terms of their duration, location, and processes of deposition. To ascertain temporal variations and spatial distributions of mineral dust deposition using wet and dry processes, weekly deposition samples were obtained at Sapporo, Toyama, Nagoya, Tottori, Fukuoka, and Cape Hedo (Okinawa) in Japan during October 2008–December 2010 using automatic wet and dry separating samplers. Mineral dust weights in water-insoluble residue were estimated from Fe contents measured using an X-ray fluorescence analyser. Wet and dry deposition fluxes of mineral dusts were both high in spring and low in summer, showing similar seasonal variations to frequency of aeolian dust events (Kosa) in Japan. For wet deposition, highest and lowest annual dust fluxes were found at Toyama (9.6 g m<sup>−2</sup> yr<sup>−1</sup>) and at Cape Hedo (1.7 g m<sup>−2</sup> yr<sup>−1</sup>) as average values in 2009 and 2010. Higher wet deposition fluxes were observed at Toyama and Tottori, where frequent precipitation (> 60% days per month) was observed during dusty seasons. For dry deposition among Toyama, Tottori, Fukuoka, and Cape Hedo, the highest and lowest annual dust fluxes were found respectively at Fukuoka (5.2 g m<sup>−2</sup> yr<sup>−1</sup>) and at Cape Hedo (2.0 g m<sup>−2</sup> yr<sup>−1</sup>) as average values in 2009 and 2010. The average ratio of wet and dry deposition fluxes was the highest at Toyama (3.3) and the lowest at Hedo (0.82), showing a larger contribution of the dry process at western sites, probably because of the distance from desert source regions and because of the effectiveness of the wet process in the dusty season. <br><br> Size distributions of refractory dust particles were obtained using four-stage filtration: > 20, > 10, > 5, and > 1 μm diameter. Weight fractions of the sum of > 20 μm and 10–20 μm (giant fraction) were higher than 50% for most of the event samples. Irrespective of the deposition type, the giant dust fractions generally decreased with increasing distance from the source area, suggesting the selective depletion of larger giant particles during atmospheric transport. Based on temporal variations of PM<sub>c</sub> (2.5 < <i>D</i> < 10 μm), ground-based lidar, backward air trajectories, and vertical profiles of potential temperatures, transport processes of dust particles are discussed for events with high-deposition and low-deposition flux with high PM<sub>c</sub>. Low dry dust depositions with high PM<sub>c</sub> concentrations were observed under stronger (5 K km<sup>−1</sup>) stratification of potential temperature with thinner and lower (< 2 km) dust distributions because the PM<sub>c</sub> fraction of dust particles only survived after depletion of giant dust particles by rapid gravitational settling at the time they reach Japan. In contrast, transport through a thicker (> 2 km) dust layer with weak vertical gradient of potential temperature carry more giant dust particles to Japan. Because giant dust particles are an important mass fraction of dust accumulation, especially in the North Pacific, which is known as a high-nutrient, low-chlorophyll (HNLC) region, the transport height and fraction of giant dust particles are important factors for studying dust budgets in the atmosphere and their role in biogeochemical cycles
    • …
    corecore