21 research outputs found

    Genetic Study of the Paleolithic and Neolithic Southeast Asians

    No full text
    DNA samples were extracted from six prehistoric human remains, found on the Malay Peninsula, dating to the Paleolithic and the Neolithic periods. Nucleotide sequences of mitochondrial DNA were determined by the polymerase chain reaction–direct sequencing method. A phylogenetic tree between prehistoric and present humans was constructed based on the nucleotide sequence data. Mitochondrial DNA phylogenetic relationships and ethnoarchaeological evidence suggest that there is a continuity beetween the pre-Neolithic humans and the present Semang and that the Neolithic humans in this area might be an ancestral group of the Senoi

    Gene expression in rat striatum following carbon monoxide poisoning

    No full text
    Carbon monoxide (CO) poisoning causes brain damage, which is attenuated by treatment with hydrogen [1,2], a scavenger selective to hydroxyl radical (·≡OH) [3]. This suggests a role of ·≡OH in brain damage due to CO poisoning. Studies have shown strong enhancement of ·≡OH production in rat striatum by severe CO poisoning with a blood carboxyhemoglobin (COHb) level >70% due to 3000 ppm CO, but not less severe CO poisoning with a blood COHb level at approximately 50% due to 1000 ppm CO [4]. Interestingly, 5% O2 causes hypoxia comparable with that by 3000 ppm CO and produces much less •OH than 3000 ppm CO does [4]. In addition, cAMP production in parallel with ·≡OH production [5] might contribute to ·≡OH production [6]. It is likely that mechanisms other than hypoxia contribute to brain damage due to CO poisoning [7]. To search for the mechanisms, we examined the effects of 1000 ppm CO, 3000 ppm CO and 5% O2 on gene expression in rat striatum. All array data have been deposited in the Gene Expression Omnibus (GEO) database under accession number GSE94780

    Diversity in matrilineages among the Jomon individuals of Japan

    No full text
    Background The Jomon period of Japan is characterised by a unique combination of sedentary and hunting/gathering lifestyles, spanning for more than 10,000 years from the final Pleistocene to the Holocene. The transition from the preceding Palaeolithic period to the Jomon period is known to have begun with the appearance of pottery usage. However, knowledge of the genetic background of the Jomon people is still limited. Aim We aimed to determine the population-scale complete mitogenome sequences of the Initial Jomon human remains and compare the occurrence of mitochondrial haplogroups in the Jomon period from temporal and regional perspectives. Subjects and methods For human remains dated to 8200–8600 cal BP, we determined their complete mitogenome sequences using target enrichment-coupled next-generation sequencing. Results We successfully obtained the complete mitogenome sequences with high depth of coverage and high concordance on consensus sequences. These sequences differed by more than three bases each, except for two individuals having completely identical sequences. Co-existence of individuals with haplogroups N9b and M7a was first observed at the same archaeological site from the Initial Jomon period. Conclusion The genetic diversity within the population was not found to be low even in the Initial Jomon period
    corecore