6 research outputs found

    The impact of Gaza fishing harbour on the Mediterranean coast of Gaza

    Get PDF
    The Mediterranean coast of Gaza strip, which is covered about 40 km in length, is rich by coastal resources. The development that occurred along the coastal lines has led to the host of problems such as increased erosion, siltation, loss of coastal resources and the destruction of the fragile marine habitats. In order to conserve the depleting coastal resources, the changes due to development and associated activities must be monitored. Studying the temporal pattern of shoreline change is considered one of the most effective means of monitoring the cumulative effects of different activities. An attempt was made to study the impact of Gaza harbour on shoreline displacement along 6 km. This paper was intended to detect changes of coastal area in Gaza city to provide future database in coastal management studies. The analysis was carried out using image processing technique (ERDAS) and Geographical Information System platform. The variation during 38 years in the shoreline along the Gaza coast was determined by analyzing MSS, TM and ETM Landsat images from 1972 to 2010. The analyses identified the erosion and accretion patterns along the coast. The shoreline was advanced south of the Gaza fishing harbor, where the wave-induced littoral transport was halted by southern breakwater and the annual beach growth rate was 15,900 m 2. On the downdrift side of the harbor, the shoreline was retreating and beaches erode at an annual rate of-14,000 m 2. This study was emphasized that the coastal band is considered as a critical area, it is therefore necessary to monitor coastal zone changes because of the importance of environmental

    The Impact of Gaza Fishing Harbour on the Mediterranean Coast of Gaza

    Full text link
    The Mediterranean coast of Gaza strip, which is covered about 40 km in length, is rich by coastal resources. The development that occurred along the coastal lines has led to the host of problems such as increased erosion, siltation, loss of coastal resources and the destruction of the fragile marine habitats. In order to conserve the depleting coastal resources, the changes due to development and associated activities must be monitored. Studying the temporal pattern of shoreline change is considered one of the most effective means of monitoring the cumulative effects of different activities. An attempt was made to study the impact of Gaza harbour on shoreline displacement along 6 km. This paper was intended to detect changes of coastal area in Gaza city to provide future database in coastal management studies. The analysis was carried out using image processing technique (ERDAS) and Geographical Information System platform. The variation during 38 years in the shoreline along the Gaza coast was determined by analyzing MSS, TM and ETM Landsat images from 1972 to 2010. The analyses identified the erosion and accretion patterns along the coast. The shoreline was advanced south of the Gaza fishing harbor, where the wave-induced littoral transport was halted by southern breakwater and the annual beach growth rate was 15,900 m2. On the downdrift side of the harbor, the shoreline was retreating and beaches erode at an annual rate of -14,000 m2. This study was emphasized that the coastal band is considered as a critical area, it is therefore necessary to monitor coastal zone changes because of the importance of environmental parameter and human disturbance. In particular, the projections of future shoreline erosion and accretion rates are considered important for long-term planning and environmental assessment for a variety of projects, including the construction and tourism facilities

    Development of n-line numerical model considering the effects of beach nourishments.

    No full text
    This study is concerned with N-line model that takes into account the contour line changes after beach nourishment. The behavior of the sand materials after the beach nourishments is represented using two-dimensional advection diffusion equation in the horizontal plane. The effect of grain size of the nourished sand is considered in the advection diffusion equation. The contour line changes are calculated by solving the fundamental equation for the conservation of bed material, and combined with the advection diffusion equation. In this paper, firstly, the performance of the model is investigated by three model tests with the beach nourishment. Secondly, two model tests are carried out in order to investigate the influence of the effect of the grain size. Finally, the presented model is applied to the sand recycle project at Yumigahama coast, Japan, in order to investigate the applicability of the model

    Development of a three dimensional circulation model based on fractional step method

    Get PDF
    A numerical model was developed for simulating a three-dimensional multilayer hydrodynamic and thermodynamic model in domains with irregular bottom topography. The model was designed for examining the interactions between flow and topography. The model was based on the three-dimensional Navier-Stokes equations and was solved using the fractional step method, which combines the finite difference method in the horizontal plane and the finite element method in the vertical plane. The numerical techniques were described and the model test and application were presented. For the model application to the northern part of Ariake Sea, the hydrodynamic
    corecore