9,062 research outputs found

    Born-form approximation for e+ e- to W+ W- to 4 fermions(+gamma)

    Full text link
    We review the results on representing the differential cross section for W-pair production, including W decay and hard-photon bremsstrahlung, in terms of a Born-form approximation of fairly simple analytic form.Comment: 16 pages with 3 figures,(eps files), Latex. Invited talk at the XXII International School of Theoretical Physics, Ustron '99, Poland, September 199

    Joule heating induced negative differential resistance in free standing metallic carbon nanotubes

    Full text link
    The features of the IVIV characteristics of metallic carbon nanotubes (m-NTs) in different experimental setups are studied using semi-classical Boltzmann transport equation together with the heat dissipation equation to account for significant thermal effects at high electric bias. Our model predicts that the shape of the m-NT characteristics is basically controlled by heat removal mechanisms. In particular we show that the onset of negative differential resistance in free standing nanotubes finds its origins in strong transport nonlinearities associated with poor heat removal unlike in substrate-supported nanotubes.Comment: 3 pages, 3 figure

    Surface Shubnikov-de Hass oscillations and non-zero Berry phases of the topological hole conduction in Tl1x_{1-x}Bi1+x_{1+x}Se2_2

    Get PDF
    We report the observation of two-dimensional Shubnikov-de Hass (SdH) oscillations in the topological insulator Tl1x_{1-x}Bi1+x_{1+x}Se2_2. Hall effect measurements exhibited electron-hole inversion in samples with bulk insulating properties. The SdH oscillations accompanying the hole conduction yielded a large surface carrier density of ns=5.1×1012n_{\rm{s}}=5.1 \times10^{12}/cm2^2, with the Landau-level fan diagram exhibiting the π\pi Berry phase. These results showed the electron-hole reversibility around the in-gap Dirac point and the hole conduction on the surface Dirac cone without involving the bulk metallic conduction.Comment: 5 pages, 4 figure

    High field electro-thermal transport in metallic carbon nanotubes

    Full text link
    We describe the electro-thermal transport in metallic carbon nanotubes (m-CNTs) by a semi-classical approach that takes into account the high-field dynamical interdependence between charge carrier and phonon populations. Our model is based on the self-consistent solution of the Boltzmann transport equation and the heat equation mediated by a phonon rate equation that accounts for the onset of non-equilibrium (optical) phonons in the high-field regime. Given the metallic nature of the nanostructures, a key ingredient of the model is the assumption of local thermalization of charge carriers. Our theory remarkably reproduces the room temperature electrical characteristics of m-CNTs on substrate and free standing (suspended), shedding light on charge-heat transport in these one dimensional nanostructures. In particular, the negative differential resistance observed in suspended m-CNTs under electric stress is attributed to inhomogeneous field profile induced by self-heating rather than the presence of hot phonons.Comment: 10 pages, 10 figure
    corecore