168 research outputs found
Magnetodielectric effect of Bi6Fe2Ti3O18 film under an ultra-low magnetic field
Good quality and fine grain Bi6Fe2Ti3O18 magnetic ferroelectric films with
single-phase layered perovskite structure have been successfully prepared via
metal organic decomposition (MOD) method. Results of low-temperature
magnetocapacitance measurements reveal that an ultra-low magnetic field of 10
Oe can produce a nontrivial magnetodielectric (MD) response in
zero-field-cooling condition, and the relative variation of dielectric
constants in magnetic field is positive, i.e., MD=0.05, when T<55K, but
negative with a maximum of MD=-0.14 when 55K<T<190K. The magnetodielectric
effect appears a sign change at 55K, which is due to transition from
antiferromagnetic to weak ferromagnetic; and vanishes abruptly around 190K,
which is thought to be associated with order-disorder transition of iron ion at
B site of perovskite structures. The ultra-low-field magnetodielectric
behaviour of Bi6Fe2Ti3O18 film has been discussed in the light of
quasi-two-dimension unique nature of local spin order in ferroelectric film.
Our results allow expectation on low-cost applications of detectors and
switches for extremely weak magnetic fields in a wide temperature range
55K-190K.Comment: 10 pages 4 figures, planned to submit to J. Phys.: Condensed Matte
Spin-Orbit Assisted Variable-Range Hopping in Strong Magnetic Fields
It is shown that in the presence of strong magnetic fields, spin-orbit
scattering causes a sharp increase in the effective density of states in the
variable-range hopping regime when temperature decreases. This effect leads to
an exponential enhancement of the conductance above its value without
spin-orbit scattering. Thus an experimental study of the hopping conductivity
in a fixed, large magnetic field, is a sensitive tool to explore the spin-orbit
scattering parameters in the strongly localized regime.Comment: 9 pages + 2 figures (enclosed), Revte
Temperature-Dependence of the Resistivity of a Dilute 2D Electron System in High Parallel Magnetic Field
We report measurements of the resistance of silicon MOSFETs as a function of
temperature in high parallel magnetic fields where the 2D system of electrons
has been shown to be fully spin-polarized. A magnetic field suppresses the
metallic behavior observed in the absence of a magnetic field. In a field of
10.8 T, insulating behavior is found for densities up to n_s approximately 1.35
x 10^{11} cm^{-2} or 1.5 n_c; above this density the resistance is a very weak
function of temperature, varying less than 10% between 0.25 K and 1.90 K. At
low densities the resistance goes to infinity more rapidly as the temperature
is reduced than in zero field and the magnetoresistance diverges as T goes to
0.Comment: 4 pages, including 4 figures. References adde
Influence of parallel magnetic fields on a single-layer two-dimensional electron system with a hopping mechanism of conductivity
Large positive (P) magnetoresistance (MR) has been observed in parallel
magnetic fields in a single 2D layer in a delta-doped GaAs/AlGaAs
heterostructure with a variable-range-hopping (VRH) mechanism of conductivity.
Effect of large PMR is accompanied in strong magnetic fields by a substantial
change in the character of the temperature dependence of the conductivity. This
implies that spins play an important role in 2D VRH conductivity because the
processes of orbital origin are not relevant to the observed effect. A possible
explanation involves hopping via double occupied states in the upper Hubbard
band, where the intra-state correlation of spins is important.Comment: 10 pages, 4 jpeg figure
Parallel Magnetic Field Induced Transition in Transport in the Dilute Two-Dimensional Hole System in GaAs
A magnetic field applied parallel to the two-dimensional hole system in the
GaAs/AlGaAs heterostructure, which is metallic in the absence of an external
magnetic field, can drive the system into insulating at a finite field through
a well defined transition. The value of resistivity at the transition is found
to depend strongly on density
Magnetoresistance and electronic structure of asymmetric GaAs/AlGaAs double quantum wells in the in-plane/tilted magnetic field
Bilayer two-dimensional electron systems formed by a thin barrier in the GaAs
buffer of a standard heterostructure were investigated by magnetotransport
measurements. In magnetic fields oriented parallel to the electron layers, the
magnetoresistance exhibits an oscillation associated with the depopulation of
the higher occupied subband and the field-induced transition into a decoupled
bilayer. Shubnikov-de Haas oscillations in slightly tilted magnetic fields
allow to reconstruct the evolution of the electron concentration in the
individual subbands as a function of the in-plane magnetic field. The
characteristics of the system derived experimentally are in quantitative
agreement with numerical self-consistent-field calculations of the electronic
structure.Comment: 6 pages, 5 figure
Tenfold Magnetoconductance in a Non-Magnetic Metal Film
We present magnetoconductance (MC) measurements of homogeneously disordered
Be films whose zero field sheet conductance (G) is described by the
Efros-Shklovskii hopping law . The low field
MC of the films is negative with G decreasing 200% below 1 T. In contrast the
MC above 1 T is strongly positive. At 8 T, G increases 1000% in perpendicular
field and 500% in parallel field. In the simpler parallel case, we observe {\em
field enhanced} variable range hopping characterized by an attenuation of
via the Zeeman interaction.Comment: 9 pages including 5 figure
Two-species percolation and Scaling theory of the metal-insulator transition in two dimensions
Recently, a simple non-interacting-electron model, combining local quantum
tunneling via quantum point contacts and global classical percolation, has been
introduced in order to describe the observed ``metal-insulator transition'' in
two dimensions [1]. Here, based upon that model, a two-species-percolation
scaling theory is introduced and compared to the experimental data. The two
species in this model are, on one hand, the ``metallic'' point contacts, whose
critical energy lies below the Fermi energy, and on the other hand, the
insulating quantum point contacts. It is shown that many features of the
experiments, such as the exponential dependence of the resistance on
temperature on the metallic side, the linear dependence of the exponent on
density, the scale of the critical resistance, the quenching of the
metallic phase by a parallel magnetic field and the non-monotonic dependence of
the critical density on a perpendicular magnetic field, can be naturally
explained by the model.
Moreover, details such as the nonmonotonic dependence of the resistance on
temperature or the inflection point of the resistance vs. parallel magnetic are
also a natural consequence of the theory. The calculated parallel field
dependence of the critical density agrees excellently with experiments, and is
used to deduce an experimental value of the confining energy in the vertical
direction. It is also shown that the resistance on the ``metallic'' side can
decrease with decreasing temperature by an arbitrary factor in the degenerate
regime ().Comment: 8 pages, 8 figure
- …