43 research outputs found

    IRS-1: Auditing the effectiveness of mTOR inhibitors

    Get PDF
    Rapamycin analogs that inhibit mTOR signaling have antitumor activity against certain lymphomas, but treatment of solid tumors has been less encouraging despite inhibition of mTOR function. Two recent papers give insight into the potential use of mTOR inhibitors. O'Reilly et al. provide evidence that poor tumor response to rapamycins is the result of relieving mTOR-mediated feedback inhibition of insulin receptor substrate 1, and activation of Akt-mediated survival. In the second paper, Kaper et al. address the impact of pathway activation on hypoxia-mediated downregulation of mTOR signaling, raising the possibility that rapalogs could selectively inhibit hypoxic cells

    Developing New Agents for Treatment of Childhood Cancer: Challenges and Opportunities for Preclinical Testing

    No full text
    Developing new therapeutics for the treatment of childhood cancer has challenges not usually associated with adult malignancies. Firstly, childhood cancer is rare, with approximately 12,500 new diagnoses annually in the U.S. in children 18 years or younger. With current multimodality treatments, the 5-year event-free survival exceeds 80%, and 70% of patients achieve long-term ā€œcureā€, hence the overall number of patients eligible for experimental drugs is small. Childhood cancer comprises many disease entities, the most frequent being acute lymphoblastic leukemias (25% of cancers) and brain tumors (21%), and each of these comprises multiple molecular subtypes. Hence, the numbers of diagnoses even for the more frequently occurring cancers of childhood are small, and undertaking clinical trials remains a significant challenge. Consequently, development of preclinical models that accurately represent each molecular entity can be valuable in identifying those agents or combinations that warrant clinical evaluation. Further, new regulations under the Research to Accelerate Cures and Equity for Children Act (RACE For Children Act) will change the way in which drugs are developed. Here, we will consider some of the limitations of preclinical models and consider approaches that may improve their ability to translate therapy to clinical trial more accurately

    Preclinical Childhood Tumor Models: Drug Efficacy Biomarker Identification and Validation

    Get PDF
    Over the past 35 years, cure rates for pediatric cancers have increased dramatically. However, it is clear that further dose intensification using cytotoxic agents or radiation therapy is not possible without enhancing morbidity and long-term effects. Consequently, novel, less genotoxic, agents are being sought to complement existing treatments. Here we discuss preclinical human tumor xenograft models of pediatric cancers that may be used practically to identify novel agents, and ā€˜omicsā€™ approaches to identifying biomarkers that may identify sensitive and resistant tumors to these agents

    Approaches to identifying drug resistance mechanisms to clinically relevant treatments in childhood rhabdomyosarcoma

    No full text
    Aim: Despite aggressive multiagent protocols, patients with metastatic rhabdomyosarcoma (RMS) have poor prognosis. In a recent high-risk trial (ARST0431), 25% of patients failed within the first year, while on therapy and 80% had tumor progression within 24 months. However, the mechanisms for tumor resistance are essentially unknown. Here we explore the use of preclinical models to develop resistance to complex chemotherapy regimens used in ARST0431.Methods: A Single Mouse Testing (SMT) protocol was used to evaluate the sensitivity of 34 RMS xenograft models to one cycle of vincristine, actinomycin D, cyclophosphamide (VAC) treatment. Tumor response was determined by caliper measurement, and tumor regression and event-free survival (EFS) were used as endpoints for evaluation. Treated tumors at regrowth were transplanted into recipient mice, and the treatment was repeated until tumors progressed during the treatment period (i.e., became resistant). At transplant, tumor tissue was stored for biochemical and omics analysis.Results: The sensitivity to VAC of 34 RMS models was determined. EFS varied from 3 weeks to > 20 weeks. Tumor models were classified as having intrinsic resistance, intermediate sensitivity, or high sensitivity to VAC therapy. Resistance to VAC was developed in multiple models after 2-5 cycles of therapy; however, there were examples where sensitivity remained unchanged after 3 cycles of treatment.Conclusion: The SMT approach allows for in vivo assessment of drug sensitivity and development of drug resistance in a large number of RMS models. As such, it provides a platform for assessing in vivo drug resistance mechanisms at a ā€œpopulationā€ level, simulating conditions in vivo that lead to clinical resistance. These VAC-resistant models represent ā€œhigh-riskā€ tumors that mimic a preclinical phase 2 population and will be valuable for identifying novel agents active against VAC-resistant disease
    corecore