566 research outputs found

    Ground state spin and Coulomb blockade peak motion in chaotic quantum dots

    Full text link
    We investigate experimentally and theoretically the behavior of Coulomb blockade (CB) peaks in a magnetic field that couples principally to the ground-state spin (rather than the orbital moment) of a chaotic quantum dot. In the first part, we discuss numerically observed features in the magnetic field dependence of CB peak and spacings that unambiguously identify changes in spin S of each ground state for successive numbers of electrons on the dot, N. We next evaluate the probability that the ground state of the dot has a particular spin S, as a function of the exchange strength, J, and external magnetic field, B. In the second part, we describe recent experiments on gate-defined GaAs quantum dots in which Coulomb peak motion and spacing are measured as a function of in-plane magnetic field, allowing changes in spin between N and N+1 electron ground states to be inferred.Comment: To appear in Proceedings of the Nobel Symposium 2000 (Physica Scripta

    A nearly closed ballistic billiard with random boundary transmission

    Full text link
    A variety of mesoscopic systems can be represented as a billiard with a random coupling to the exterior at the boundary. Examples include quantum dots with multiple leads, quantum corrals with different kinds of atoms forming the boundary, and optical cavities with random surface refractive index. The specific example we study is a circular (integrable) billiard with no internal impurities weakly coupled to the exterior by a large number of leads with one channel open in each lead. We construct a supersymmetric nonlinear σ\sigma-model by averaging over the random coupling strengths between bound states and channels. The resulting theory can be used to evaluate the statistical properties of any physically measurable quantity in a billiard. As an illustration, we present results for the local density of states.Comment: 5 pages, 1 figur

    Scalar and vector Keldysh models in the time domain

    Full text link
    The exactly solvable Keldysh model of disordered electron system in a random scattering field with extremely long correlation length is converted to the time-dependent model with extremely long relaxation. The dynamical problem is solved for the ensemble of two-level systems (TLS) with fluctuating well depths having the discrete Z_2 symmetry. It is shown also that the symmetric TLS with fluctuating barrier transparency may be described in terms of the planar Keldysh model with dime-dependent random planar rotations in xy plane having continuous SO(2) symmetry. The case of simultaneous fluctuations of the well depth and barrier transparency is subject to non-abelian algebra. Application of this model to description of dynamic fluctuations in quantum dots and optical lattices is discussed.Comment: 6 pages, 5 eps figures. Extended version of the paper to be published in JETP Lett 89 (2009

    Finite Size Corrections for the Pairing Hamiltonian

    Full text link
    We study the effects of superconducting pairing in small metallic grains. We show that in the limit of large Thouless conductance one can explicitly determine the low energy spectrum of the problem as an expansion in the inverse number of electrons on the grain. The expansion is based on the formal exact solution of the Richardson model. We use this expansion to calculate finite size corrections to the ground state energy, Matveev-Larkin parameter, and excitation energies.Comment: 22 pages, 1 figur

    Nonequilibrium theory of Coulomb blockade in open quantum dots

    Full text link
    We develop a non-equilibrium theory to describe weak Coulomb blockade effects in open quantum dots. Working within the bosonized description of electrons in the point contacts, we expose deficiencies in earlier applications of this method, and address them using a 1/N expansion in the inverse number of channels. At leading order this yields the self-consistent potential for the charging interaction. Coulomb blockade effects arise as quantum corrections to transport at the next order. Our approach unifies the phase functional and bosonization approaches to the problem, as well as providing a simple picture for the conductance corrections in terms of renormalization of the dot's elastic scattering matrix, which is obtained also by elementary perturbation theory. For the case of ideal contacts, a symmetry argument immediately allows us to conclude that interactions give no signature in the averaged conductance. Non-equilibrium applications to the pumped current in a quantum pump are worked out in detail.Comment: Published versio

    Discrete charging of metallic grains: Statistics of addition spectra

    Full text link
    We analyze the statistics of electrostatic energies (and their differences) for a quantum dot system composed of a finite number KK of electron islands (metallic grains) with random capacitance-inductance matrix CC, for which the total charge is discrete, Q=NeQ=Ne (where ee is the charge of an electron and NN is an integer). The analysis is based on a generalized charging model, where the electrons are distributed among the grains such that the electrostatic energy E(N) is minimal. Its second difference (inverse compressibility) χN=E(N+1)−2E(N)+E(N−1)\chi_{N}=E(N+1)-2 E(N)+E(N-1) represents the spacing between adjacent Coulomb blockade peaks appearing when the conductance of the quantum dot is plotted against gate voltage. The statistics of this quantity has been the focus of experimental and theoretical investigations during the last two decades. We provide an algorithm for calculating the distribution function corresponding to χN\chi_{N} and show that this function is piecewise polynomial.Comment: 21 pages, no figures, mathematical nomenclature (except for Abstract and Introduction

    Spin and Charge Correlations in Quantum Dots: An Exact Solution

    Full text link
    The inclusion of charging and spin-exchange interactions within the Universal Hamiltonian description of quantum dots is challenging as it leads to a non-Abelian action. Here we present an {\it exact} analytical solution of the probem, in particular, in the vicinity of the Stoner instabilty point. We calculate several observables, including the tunneling density of states (TDOS) and the spin susceptibility. Near the instability point the TDOS exhibits a non-monotonous behavior as function of the tunneling energy, even at temperatures higher than the exchange energy. Our approach is generalizable to a broad set of observables, including the a.c. susceptibility and the absorption spectrum for anisotropic spin interaction. Our results could be tested in nearly ferromagnetic materials.Comment: JETPL class, 6 pages, 2 figure

    Role of a parallel magnetic field in two dimensional disordered clusters containing a few correlated electrons

    Full text link
    An ensemble of 2d disordered clusters with a few electrons is studied as a function of the Coulomb energy to kinetic energy ratio r_s. Between the Fermi system (small r_s) and the Wigner molecule (large r_s), an interaction induced delocalization of the ground state takes place which is suppressed when the spins are aligned by a parallel magnetic field. Our results confirm the existence of an intermediate regime where the Wigner antiferromagnetism defavors the Stoner ferromagnetism and where the enhancement of the Lande g factor observed in dilute electron systems is reproduced.Comment: 4 pages, 3 figure

    Interactions and Disorder in Quantum Dots: Instabilities and Phase Transitions

    Full text link
    Using a fermionic renormalization group approach we analyse a model where the electrons diffusing on a quantum dot interact via Fermi-liquid interactions. Describing the single-particle states by Random Matrix Theory, we find that interactions can induce phase transitions (or crossovers for finite systems) to regimes where fluctuations and collective effects dominate at low energies. Implications for experiments and numerical work on quantum dots are discussed.Comment: 4 pages, 1 figure; version to appear in Phys Rev Letter
    • …
    corecore