201 research outputs found
Superhyperfine interactions in Ce3+ doped LiYF4 crystal: ENDOR measurements
The first observation of the resolved Mims electron-nuclear double resonance
(ENDOR) spectra from the nearby and remote nuclei of 19F and 7Li nuclei on
impurity Ce3+ ions in LiYF4 crystal is reported. It shows that LiYF4:Ce3+
system can be exploited as a convenient matrix for performing spin
manipulations and adjusting quantum computation protocols while ENDOR technique
could be used for the investigation of electron-nuclear interaction with all
the nuclei of the system and exploited for the electron-nuclear spin
manipulations.Comment: 4 pages, 2 figures, 1 Table. Reported on Theor-2017 (Kazan, Russia)
Conferenc
Probing the Yb spin relaxation in YYbBaCuO by Electron Paramagnetic Resonance
The relaxation of Yb in YBaCuO () was studied
using Electron Paramagnetic Resonance (EPR). It was found that both electronic
and phononic processes contribute to the Yb relaxation. The phononic
part of the relaxation has an exponential temperature dependence, which can be
explained by a Raman process via the coupling to high-energy (500 K)
optical phonons or an Orbach-like process via the excited vibronic levels of
the Cu ions (localized Slonczewski-modes). In a sample with a maximum
oxygen doping =6.98, the electronic part of the relaxation follows a
Korringa law in the normal state and strongly decreases below .
Comparison of the samples with and without Zn doping proved that the
superconducting gap opening is responsible for the sharp decrease of Yb
relaxation in YBaCuO. It was shown that the electronic
part of the Yb relaxation in the superconducting state follows the same
temperature dependence as Cu and O nuclear relaxations despite
the huge difference between the corresponding electronic and nuclear relaxation
rates.Comment: 8 pages, 6 figure
Coherent manipulation of dipolar coupled spins in an anisotropic environment
We study coherent dynamics in a system of dipolar coupled spin qubits diluted
in solid and subjected to a driving microwave field. In the case of rare earth
ions, anisotropic crystal background results in anisotropic g tensor and thus
modifies the dipolar coupling. We develop a microscopic theory of spin
relaxation in transient regime for the frequently encountered case of axially
symmetric crystal field. The calculated decoherence rate is nonlinear in Rabi
frequency. We show that the direction of static magnetic field that corresponds
to the highest spin g-factor is preferable in order to obtain higher number of
coherent qubit operations. The results of calculations are in excellent
agreement with our experimental data on Rabi oscillations recorded for a series
of CaWO4 crystals with different concentrations of Nd3+ ions.Comment: 16 pages, 9 figure
Spin dynamics of observed by Electron Spin Resonance
Below the Kondo temperature electron spin resonance (ESR) usually
is not observable from the Kondo-ion itself because the characteristic spin
fluctuation energy results in a huge width of the ESR line. The heavy fermion
metal YbRhSi seems to be an exceptional case where definite ESR
spectra show characteristic properties of the Kondo-ion Yb well
\textit{below} . We found that the spin dynamics of
YbRhSi, as determined by its ESR relaxation, is spatially
characterized by an anisotropy of the zero temperature residual relaxation
only.Comment: Presented at NanoRes 2004, Kazan; 4 pages, 3 Figure
Inhomogeneity of the intrinsic magnetic field in superconducting YBa2Cu3OX compounds as revealed by rare-earth EPR-probe
X-band electron paramagnetic resonance on doped Er3+ and Yb3+ ions in
Y0.99(Yb,Er)0.01Ba2Cu3OX compounds with different oxygen contents in the wide
temperature range (4-120)K have been made. In the superconducting species, the
strong dependencies of the linewidth and resonance line position from the sweep
direction of the applied magnetic field are revealed at the temperatures
significantly below TC. The possible origins of the observed hysteresis are
analyzed. Applicability of the presented EPR approach to extract information
about the dynamics of the flux-line lattice and critical state parameters
(critical current density, magnetic penetration depth, and characteristic
spatial scale of the inhomogeneity) is discussedComment: 17 pages, 5 Figures. Renewed versio
Temperature dependence of the EPR linewidth of Yb3+ - ions in Y0.99Yb0.01Ba2Cu3OX compounds: Evidence for an anomaly near TC
Electron paramagnetic resonance experiments on doped Yb3+ ions in YBaCuO
compounds with different oxygen contents have been made. We have observed the
strong temperature dependence of the EPR linewidth in the all investigated
samples caused by the Raman processes of spin-lattice relaxation. The
spin-lattice relaxation rate anomaly revealed near TC in the superconducting
species can be assigned to the phonon density spectrum changesComment: 10 pages, 4 figures Renewed versio
On the "spin-freezing" mechanism in underdoped superconducting cuprates
The letter deals with the spin-freezing process observed by means of NMR-NQR
relaxation or by muon spin rotation in underdoped cuprate superconductors. This
phenomenon, sometimes referred as coexistence of antiferromagnetic and
superconducting order parameters, is generally thought to result from randomly
distributed magnetic moments related to charge inhomogeneities (possibly
stripes) which exhibit slowing down of their fluctuations on cooling below
T . Instead, we describe the experimental findings as due to fluctuating,
vortex-antivortex, orbital currents state coexisting with d-wave
superconducting state. A direct explanation of the experimental results, in
underdoped YCaBaCuO and LaSrCuO,
is thus given in terms of freezing of orbital current fluctuations
Nonlinear spin relaxation in strongly nonequilibrium magnets
A general theory is developed for describing the nonlinear relaxation of spin
systems from a strongly nonequilibrium initial state, when, in addition, the
sample is coupled to a resonator. Such processes are characterized by nonlinear
stochastic differential equations. This makes these strongly nonequilibrium
processes principally different from the spin relaxation close to an
equilibrium state, which is represented by linear differential equations. The
consideration is based on a realistic microscopic Hamiltonian including the
Zeeman terms, dipole interactions, exchange interactions, and a single-site
anisotropy. The influence of cross correlations between several spin species is
investigated. The critically important function of coupling between the spin
system and a resonant electric circuit is emphasized. The role of all main
relaxation rates is analyzed. The phenomenon of self-organization of transition
coherence in spin motion, from the quantum chaotic stage of incoherent
fluctuations, is thoroughly described. Local spin fluctuations are found to be
the triggering cause for starting the spin relaxation from an incoherent
nonequilibrium state. The basic regimes of collective coherent spin relaxation
are studied.Comment: Latex file, 31 page
- …