20 research outputs found

    The Wnt Antagonist Frzb-1 Regulates Chondrocyte Maturation and Long Bone Development during Limb Skeletogenesis

    Get PDF
    AbstractThe Wnt antagonist Frzb-1 is expressed during limb skeletogenesis, but its roles in this complex multistep process are not fully understood. To address this issue, we determined Frzb-1 gene expression patterns during chick long bone development and carried out gain- and loss-of-function studies by misexpression of Frzb-1, Wnt-8 (a known Frzb-1 target), or different forms of the intracellular Wnt mediator LEF-1 in developing limbs and cultured chondrocytes. Frzb-1 expression was quite strong in mesenchymal prechondrogenic condensations and then characterized epiphyseal articular chondrocytes and prehypertrophic chondrocytes in growth plates. Virally driven Frzb-1 misexpression caused shortening of skeletal elements, joint fusion, and delayed chondrocyte maturation, with consequent inhibition of matrix mineralization, metalloprotease expression, and marrow/bone formation. In good agreement, misexpression of Frzb-1 or a dominant-negative form of LEF-1 in cultured chondrocytes maintained the cells at an immature stage. Instead, misexpression of Wnt-8 or a constitutively active LEF-1 strongly promoted chondrocyte maturation, hypertrophy, and calcification. Immunostaining revealed that the distribution of endogenous Wnt mediator β-catenin changes dramatically in vivo and in vitro, from largely cytoplasmic in immature proliferating and prehypertrophic chondrocytes to nuclear in hypertrophic mineralizing chondrocytes. Misexpression of Frzb-1 prevented β-catenin nuclear relocalization in chondrocytes in vivo or in vitro. The data demonstrate that Frzb-1 exerts a strong influence on limb skeletogenesis and is a powerful and direct modulator of chondrocyte maturation, phenotype, and function. Phases of skeletogenesis, such as terminal chondrocyte maturation and joint formation, appear to be particularly dependent on Wnt signaling and thus very sensitive to Frzb-1 antagonistic action

    The Way of Cusp Formation:

    No full text

    Large-scale experiment to assess the collision impact force from a tsunami wave on a drifting castaway.

    No full text
    Although most fatalities in tsunami-related disasters are conjectured to be a result of drowning, injury risk owing to collision with other floating debris or fixed buildings has not been studied sufficiently. In this study, the impact force corresponding to the collision of a concrete block and drifting test body in a tsunami wave was experimentally investigated, and the injury risk was evaluated in terms of different biomechanical indexes; specifically, maximum acceleration, head injury criterion, and impact force. The injury risk indicated by the considered indexes was reasonably low. It was noted that if a healthy adult collided with a concrete wall under a velocity of 2.5 m s-1 and wave height of 0.59 m, the adult would likely not be critically injured. However, a similar collision impact poses considerable risk to infants and children, as well as the more sensitive regions of the adult body. Moreover, in the case of large tsunamis, such as that in the 2011 Great East Japan Earthquake, a drifting person may be at considerable risk for injuries. The collision impact occurring on the tip of a surge flow is notably significantly larger than that on a bore flow. This is because a surge flow, which arrives at the concrete block earlier than a bore flow, forms a certain water layer along the concrete wall and that layer acts as a cushion for any body drifting on the bore flow, indicating the importance of such a buffering effect. These findings can provide practical guidance regarding the formulation of effective tsunami-protection measures

    Potential technique for improving the survival of victims of tsunamis

    No full text
    <div><p>We investigated a method for surviving tsunamis that involved the use of personal flotation devices (PFDs). In our work, we succeeded in numerically demonstrating that the heads of all the dummies wearing PFDs remained on the surface and were not dragged underwater after the artificial tsunami wave hit them. In contrast, the heads of all the dummies not wearing PFDs were drawn underwater immediately; these dummies were subsequently entrapped in a vortex. The results of our series of experiments are important as a first step to preventing the tragedies caused by tsunamis.</p></div

    Frames from S3 Video, Experiment No. 2 (top view, dummy with a PFD).

    No full text
    <p>Frames from <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0197498#pone.0197498.s003" target="_blank">S3 Video</a>, Experiment No. 2 (top view, dummy with a PFD).</p
    corecore