6 research outputs found

    Metabolic drift in the aging brain.

    Get PDF
    Brain function is highly dependent upon controlled energy metabolism whose loss heralds cognitive impairments. This is particularly notable in the aged individuals and in age-related neurodegenerative diseases. However, how metabolic homeostasis is disrupted in the aging brain is still poorly understood. Here we performed global, metabolomic and proteomic analyses across different anatomical regions of mouse brain at different stages of its adult lifespan. Interestingly, while severe proteomic imbalance was absent, global-untargeted metabolomics revealed an energymetabolic drift or significant imbalance in core metabolite levels in aged mouse brains. Metabolic imbalance was characterized by compromised cellular energy status (NAD decline, increased AMP/ATP, purine/pyrimidine accumulation) and significantly altered oxidative phosphorylation and nucleotide biosynthesis and degradation. The central energy metabolic drift suggests a failure of the cellular machinery to restore metabostasis (metabolite homeostasis) in the aged brain and therefore an inability to respond properly to external stimuli, likely driving the alterations in signaling activity and thus in neuronal function and communication

    Global Isotope Metabolomics Reveals Adaptive Strategies for Nitrogen Assimilation.

    No full text
    Nitrogen cycling is a microbial metabolic process essential for global ecological/agricultural balance. To investigate the link between the well-established ammonium and the alternative nitrate assimilation metabolic pathways, global isotope metabolomics was employed to examine three nitrate reducing bacteria using (15)NO3 as a nitrogen source. In contrast to a control (Pseudomonas stutzeri RCH2), the results show that two of the isolates from Oak Ridge, Tennessee (Pseudomonas N2A2 and N2E2) utilize nitrate and ammonia for assimilation concurrently with differential labeling observed across multiple classes of metabolites including amino acids and nucleotides. The data reveal that the N2A2 and N2E2 strains conserve nitrogen-containing metabolites, indicating that the nitrate assimilation pathway is a conservation mechanism for the assimilation of nitrogen. Co-utilization of nitrate and ammonia is likely an adaption to manage higher levels of nitrite since the denitrification pathways utilized by the N2A2 and N2E2 strains from the Oak Ridge site are predisposed to the accumulation of the toxic nitrite. The use of global isotope metabolomics allowed for this adaptive strategy to be investigated, which would otherwise not have been possible to decipher
    corecore