47 research outputs found

    VULNERABLE PLAQUE IN ATHEROSCLEROSIS IS CHARACTERIZED BY MICROVASCULARE INVOLVING THE VESSELS DERIVED FROM “VASA VASORUM INTERNA”

    Get PDF

    Osteopontin Plays a Critical Role in Interstitial Fibrosis but Not Glomerular Sclerosis in Diabetic Nephropathy

    Get PDF
    Background/Aims: Osteopontin (OPN) has been implicated in the pathology of several renal conditions. The aim of this study was to clarify the roles of OPN in diabetic nephropathy. Methods: Diabetes mellitus (DM) was induced in wild-type (WT) and OPN knockout (KO) mice by injecting streptozotocin. The mice were killed 20 weeks after induction of DM and their kidneys removed. Results: Renal mRNA expression of OPN was increased in WT-DM mice compared to WT-sham mice. Immunohistochemistry showed high levels of OPN expression in the proximal tubules of WT-DM mice. Kidney weight and urinary albumin excretion increased to similar levels in the WT-DM and KO-DM mice. Interstitial fibrosis was increased in WT-DM mice compared to KO-DM mice. However, there were no differences in the degree of mesangial expansion or glomerular hypertrophy between the two groups. F4/80-positive cells (macrophages) and FSP-1-positive cells (fibroblasts) showed significantly higher infiltration in WT-DM mice than in KO-DM mice. Renal mRNA expression of NADPH oxidase subunits and urinary 8-isoprostane excretion were also increased in WT-DM mice. Conclusions: These results indicated that OPN is a key molecule that induces interstitial fibrosis in the diabetic kidney, but does not induce glomerular sclerosis

    Neoatherosclerosis development following bioresorbable vascular scaffold implantation in diabetic and non-diabetic swine

    Get PDF
    Background: DM remains a risk factor for poor outcome after stent-implantation, but little is known if and how DM affects the vascular response to BVS. Aim: The aim of our study was to examine coronary responses to bioresorbable vascular scaffolds (BVS) in swine with and without diabetes mellitus fed a ‘fast-food’ diet (FF-DM and FF-NDM, respectively) by sequential optical coherence tomography (OCT)-imaging and histology. Methods: Fifteen male swine were evaluated. Eight received streptozotocin-injection to induce DM. After 9 months (M), 32 single BVS were implanted in epicardial arteries with a stent to artery (S/A)-ratio of 1.1:1 under quantitative coronary angiography (QCA) and OCT guidance. Lumen, scaffold, neointimal coverage and composition were assessed by QCA, OCT and near-infrared spectroscopy (NIRS) pre- and/or post-procedure, at 3M and 6M. Additionally, polarization-sensitive (PS)-OCT was performed in 7 swine at 6M. After sacrifice at 3M and 6M, histology and polymer degradation analysis were performed. Results: Late lumen loss was high (~60%) within the first 3M after BVS-implantation (P0.20). Neointimal coverage was highly heterogeneous in all swine (DM vs. NDM P>0.05), with focal lipid accumulation, irregular collagen distribution and neointimal calcification. Likewise, polymer mass loss was low (~2% at 3M, ~5% at 6M;P>0.20) and not associated with DM or inflammation. Conclusion: Scaffold coverage showed signs of neo-atherosclerosis in all FF-DM and FF-NDM swine, scaffold polymer was preserved and the vascular response to BVS was not influenced by diabetes

    Neoatherosclerosis development following bioresorbable vascular scaffold implantation in diabetic and non-diabetic swine

    Get PDF
    Background: DM remains a risk factor for poor outcome after stent-implantation, but little is known if and how DM affects the vascular response to BVS. Aim The aim of our study was to examine coronary responses to bioresorbable vascular scaffolds (BVS) in swine with and without diabetes mellitus fed a ‘fast-food’ diet (FF-DM and FF-NDM, respectively) by sequential optical coherence tomography (OCT)-imaging and histology. Methods: Fifteen male swine were evaluated. Eight received streptozotocin-injection to induce DM. After 9 months (M), 32 single BVS were implanted in epicardial arteries with a stent to artery (S/A)-ratio of 1.1:1 under quantitative coronary angiography (QCA) and OCT guidance. Lumen, scaffold, neointimal coverage and composition were assessed by QCA, OCT and near-infrared spectroscopy (NIRS) pre- and/or post-procedure, at 3M and 6M. Additionally, polarization-sensitive (PS)-OCT was performed in 7 swine at 6M. After sacrifice at 3M and 6M, histology and polymer degradation analysis were performed. Results: Late lumen loss was high (~60%) within the first 3M after BVS-implantation (P0.20). Neointimal coverage was highly heterogeneous in all swine (DM vs. NDM P>0.05), with focal lipid accumulation, irregular collagen distribution and neointimal calcification. Likewise, polymer mass loss was low (~2% at 3M, ~5% at 6M;P>0.20) and not associated with DM or inflammation. Conclusion: Scaffold coverage showed signs of neo-atherosclerosis in all FF-DM and FF-NDM swine, scaffold polymer was preserved and the vascular response to BVS was not influenced by diabetes

    Intestinal edema induced by LPS-induced endotoxemia is associated with an inflammasome adaptor ASC.

    No full text
    The apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)/caspase-1/interleukin(IL)-1β axis, also known as the inflammasome pathway, is indispensable for IL-1β activation in response to various pathogens or own damages. Previously, we developed an NLRP3-inflammasome using a cell-free system and identified ASC targeting drugs; thus, examination of ASC-related histopathology in various diseases could help to provide indications for these drugs. Here, we generated mice deficient only in ASC-protein (ASC-deficient (AD) mice) using CRISPR/Cas9 technology, studied which tissues were most affected, and obtained histopathological images of lipopolysaccharide (LPS)-induced endotoxemia. C57BL/6 wild-type (WT) and (AD) mice were injected intraperitoneally with a lethal dose (50 μg/g) of LPS. Statistical analysis of the survival of C57BL/6 mice and AD mice was performed using the Kaplan-Meier method and the log-rank test. The histopathological findings of multiple tissues from these mice were compared. Acute inflammation (e.g., catarrhal inflammation), along with congestion was observed in the colon of WT mice but not in that of AD mice. Adhesion of neutrophils to capillaries, along with interstitial infiltration, were observed in multiple tissues from WT mice. In AD mice, neutrophil infiltration was less severe but remained evident in the stomach, small intestine, heart, liver, kidney, spleen, and brain. Notably, there was no difference between WT and AD mice with respect to alveolar neutrophil infiltration and interstitial edema. These findings suggest that even though ASC contributes to systemic inflammation, it is dependent on the tissue involved. Intestinal congestion and edema might be good candidates for anti-ASC-targeted therapy

    Applications of reconstituted inflammasomes in a cell-free system to drug discovery and elucidation of the pathogenesis of autoinflammatory diseases

    No full text
    Abstract The inflammasome, typically consisting of a Nod-like receptor, apoptosis-associated speck-like protein, and pro-caspase-1, has recently been identified as a huge intracellular complex, which plays a crucial role in interleukin-1 maturation or specific physiological functions. Two Nod-like receptors, such as nucleotide-binding oligomerization domains-containing protein (Nod)1 and Nod2, interact with the receptor-interacting protein serine-threonine kinase (RIPK)2 accompanied by Iκ-B kinase (IKK) complexes to construct the nodosome, leading to nuclear factor (NF)-κB activation. The aberrant activation of inflammasomes or nodosomes causes autoinflammatory diseases. Therefore, inflammasomes may be attractive targets to treat autoinflammatory diseases. Our aim is to develop reconstituted inflammasomes in a cell-free system to discover specific molecular-target drugs and elucidate the molecular pathogenesis of autoinflammatory diseases. In this review, we describe reconstituted inflammasomes in a cell-free system
    corecore