52 research outputs found

    Inhibition of Progenitor Dendritic Cell Maturation by Plasma from Patients with Peripartum Cardiomyopathy: Role in Pregnancy-associated Heart Disease

    Get PDF
    Dendritic cells (DCs) play dual roles in innate and adaptive immunity based on their functional maturity, and both innate and adaptive immune responses have been implicated in myocardial tissue remodeling associated with cardiomyopathies. Peripartum cardiomyopathy (PPCM) is a rare disorder which affects women within one month antepartum to five months postpartum. A high occurrence of PPCM in central Haiti (1 in 300 live births) provided the unique opportunity to study the relationship of immune activation and DC maturation to the etiology of this disorder. Plasma samples from two groups (n = 12) of age- and parity-matched Haitian women with or without evidence of PPCM were tested for levels of biomarkers of cardiac tissue remodeling and immune activation. Significantly elevated levels of GM-CSF, endothelin-1, proBNP and CRP and decreased levels of TGF- were measured in PPCM subjects relative to controls. Yet despite these findings, in vitro maturation of normal human cord blood derived progenitor dendritic cells (CBDCs) was significantly reduced (p < 0.001) in the presence of plasma from PPCM patients relative to plasma from post-partum control subjects as determined by expression of CD80, CD86, CD83, CCR7, MHC class II and the ability of these matured CBDCs to induce allo-responses in PBMCs. These results represent the first findings linking inhibition of DC maturation to the dysregulation of normal physiologic cardiac tissue remodeling during pregnancy and the pathogenesis of PPCM

    The gastrointestinal nematode Trichostrongylus colubriformis down-regulates immune gene expression in migratory cells in afferent lymph

    Get PDF
    Background: Gastrointestinal nematode (GIN) infections are the predominant cause of economic losses in sheep. Infections are controlled almost exclusively by the use of anthelmintics which has lead to the selection of drug resistant nematode strains. An alternative control approach would be the induction of protective immunity to these parasites. This study exploits an ovine microarray biased towards immune genes, an artificially induced immunity model and the use of pseudo-afferent lymphatic cannulation to sample immune cells draining from the intestine, to investigate possible mechanisms involved in the development of immunity.\ud \ud Results: During the development of immunity to, and a subsequent challenge infection with Trichostrongylus colubriformis, the transcript levels of 2603 genes of cells trafficking in afferent intestinal lymph were significantly modulated (P < 0.05). Of these, 188 genes were modulated more than 1.3-fold and involved in immune function. Overall, there was a clear trend for down-regulation of many genes involved in immune functions including antigen presentation, caveolar-mediated endocytosis and protein ubiquitination. The transcript levels of TNF receptor associated factor 5 (TRAF5), hemopexin (HPX), cysteine dioxygenase (CDO1), the major histocompatability complex Class II protein (HLA-DMA), interleukin-18 binding protein (IL-18BP), ephrin A1 (EFNA1) and selenoprotein S (SELS) were modulated to the greatest degree.\ud \ud Conclusions: This report describes gene expression profiles of afferent lymph cells in sheep developing immunity to nematode infection. Results presented show a global down-regulation of the expression of immune genes which may be reflective of the natural temporal response to nematode infections in livestock

    Transforming growth factor-β and breast cancer: Tumor promoting effects of transforming growth factor-β

    Get PDF
    The transforming growth factor (TGF)-βs are potent growth inhibitors of normal epithelial cells. In established tumor cell systems, however, the preponderant experimental evidence suggests that TGF-βs can foster tumor-host interactions that indirectly support the viability and/or progression of cancer cells. The timing of this 'TGF-β switch' during the progressive transformation of epithelial cells is not clear. More recent evidence also suggests that autocrine TGF-β signaling is operative in some tumor cells, and can also contribute to tumor invasiveness and metastases independent of an effect on nontumor cells. The dissociation of antiproliferative and matrix associated effects of autocrine TGF-β signaling at a transcriptional level provides for a mechanism(s) by which cancer cells can selectively use this signaling pathway for tumor progression. Data in support of the cellular and molecular mechanisms by which TGF-β signaling can accelerate the natural history of tumors will be reviewed in this section

    Galectin-1, a gene preferentially expressed at the tumor margin, promotes glioblastoma cell invasion

    Get PDF
    BACKGROUND: High-grade gliomas, including glioblastomas (GBMs), are recalcitrant to local therapy in part because of their ability to invade the normal brain parenchyma surrounding these tumors. Animal models capable of recapitulating glioblastoma invasion may help identify mediators of this aggressive phenotype. METHODS: Patient-derived glioblastoma lines have been propagated in our laboratories and orthotopically xenografted into the brains of immunocompromized mice. Invasive cells at the tumor periphery were isolated using laser capture microdissection. The mRNA expression profile of these cells was compared to expression at the tumor core, using normal mouse brain to control for host contamination. Galectin-1, a target identified by screening the resulting data, was stably over-expressed in the U87MG cell line. Sub-clones were assayed for attachment, proliferation, migration, invasion, and in vivo tumor phenotype. RESULTS: Expression microarray data identified galectin-1 as the most potent marker (p-value 4.0 x 10(-8)) to identify GBM cells between tumor-brain interface as compared to the tumor core. Over-expression of galectin-1 enhanced migration and invasion in vitro. In vivo, tumors expressing high galectin-1 levels showed enhanced invasion and decreased host survival. CONCLUSIONS: In conclusion, cells at the margin of glioblastoma, in comparison to tumor core cells, have enhanced expression of mediators of invasion. Galectin-1 is likely one such mediator. Previous studies, along with the current one, have proven galectin-1 to be important in the migration and invasion of glioblastoma cells, in GBM neoangiogenesis, and also, potentially, in GBM immune privilege. Targeting this molecule may offer clinical improvement to the current standard of glioblastoma therapy, i.e. radiation, temozolomide, anti-angiogenic therapy, and vaccinotherapy

    The Use of Autologous Stimulated Lymphocytes as an Adoptive Immunotherapy for Malignant Gliomas : Benefits and Limitations

    No full text
    corecore