3 research outputs found

    Genetic inactivation of the sigma-1 chaperone protein results in decreased expression of the R2 subunit of the GABA-B receptor and increased susceptibility to seizures

    Get PDF
    Funding Information: This study was supported by European Regional Development Fund Project No. 1.1.1.2/VIAA/2/18/376 (PostDoc Latvia), “Sigma chaperone protein as a novel drug target”. We thank Laboratorios Dr. Esteve, S.A. (Barcelona, Spain) for providing CD-1 background sigma-1 receptor knockout mice. We thank Associate Professors Inga Kadisha and Thomas van Groen (University of Alabama at Birmingham, Birmingham, Alabama, USA) for fruitful discussions regarding immunohistochemistry. We also thank Dr. biol. Dace Pjanova (Latvian Biomedical Research and Study Centre, Riga, Latvia) for the help with confocal imaging and Abberior Instruments (Göttingen, Germany) for a kind gift of fluorescently labeled Abberior STAR antibodies. Publisher Copyright: © 2020 The Author(s)There is a growing body of evidence demonstrating the significant involvement of the sigma-1 chaperone protein in the modulation of seizures. Several sigma-1 receptor (Sig1R) ligands have been demonstrated to regulate the seizure threshold in acute and chronic seizure models. However, the mechanism by which Sig1R modulates the excitatory and inhibitory pathways in the brain has not been elucidated. The aim of this study was to compare the susceptibility to seizures of wild type (WT) and Sig1R knockout (Sig1R−/−) mice in intravenous pentylenetetrazol (PTZ) and (+)-bicuculline (BIC) infusion-induced acute seizure and Sig1R antagonist NE-100-induced seizure models. To determine possible molecular mechanisms, we used quantitative PCR, Western blotting and immunohistochemistry to assess the possible involvement of several seizure-related genes and proteins. Peripheral tissue contractile response of WT and Sig1R−/− mice was studied in an isolated vasa deferentia model. The most important finding was the significantly decreased expression of the R2 subunit of the GABA-B receptor in the hippocampus and habenula of Sig1R−/− mice. Our results demonstrated that Sig1R−/− mice have decreased thresholds for PTZ- and BIC-induced tonic seizures. In the NE-100-induced seizure model, Sig1R−/− animals demonstrated lower seizure scores, shorter durations and increased latency times of seizures compared to WT mice. Sig1R-independent activities of NE-100 included downregulation of the gene expression of iNOS and GABA-A γ2 and inhibition of KCl-induced depolarization in both WT and Sig1R−/− animals. In conclusion, the results of this study indicate that the lack of Sig1R resulted in decreased expression of the R2 subunit of the GABA-B receptor and increased susceptibility to seizures. Our results confirm that Sig1R is a significant molecular target for seizure modulation and warrants further investigation for the development of novel anti-seizure drugs.publishersversionPeer reviewe

    Skull Fractures Induce Neuroinflammation and Worsen Outcomes after Closed Head Injury in Mice

    Get PDF
    Publisher Copyright: © Liga Zvejniece et al., 2020; Published by Mary Ann Liebert, Inc. 2020. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.The weight-drop model is used widely to replicate closed-head injuries in mice; however, the histopathological and functional outcomes may vary significantly between laboratories. Because skull fractures are reported to occur in this model, we aimed to evaluate whether these breaks may influence the variability of the weight-drop (WD) model. Male Swiss Webster mice underwent WD injury with either a 2 or 5 mm cone tip, and behavior was assessed at 2 h and 24 h thereafter using the neurological severity score. The expression of interleukin (IL)-6, IL-1β, tumor necrosis factor-α, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinase-1 genes was measured at 12 h and 1, 3, and 14 days after injury. Before the injury, micro-computed tomography (micro-CT) was performed to quantify skull thickness at the impact site. With a conventional tip diameter of 2 mm, 33% of mice showed fractures of the parietal bone; the 5 mm tip produced only 10% fractures. Compared with mice without fractures, mice with fractures had a severity-dependent worse functional outcome and a more pronounced upregulation of inflammatory genes in the brain. Older mice were associated with thicker parietal bones and were less prone to skull fractures. In addition, mice that underwent traumatic brain injury (TBI) with skull fracture had macroscopic brain damage because of skull depression. Skull fractures explain a considerable proportion of the variability observed in the WD model in mice - i.e., mice with skull fractures have a much stronger inflammatory response than do mice without fractures. Using older mice with thicker skull bones and an impact cone with a larger diameter reduces the rate of skull fractures and the variability in this very useful closed-head TBI model.publishersversionPeer reviewe
    corecore