2 research outputs found

    High-Performance Plasmonic Nanolasers with a Nanotrench Defect Cavity for Sensing Applications

    No full text
    Recent developments in small footprint plasmonic nanolasers show promise for active optical sensing with potential applications in various fields, including real-time and label-free biochemical sensing, and gas detection. In this study, we demonstrate a novel hybrid plasmonic crystal nanolaser that features a ZnO nanowire placed on Al grating surfaces with a nanotrench defect nanocavity. The lasing action of gain-assisted defect nanocavity overcomes the ohmic loss parasitically in the plasmonic nanostructures. Therefore, the plasmonic nanolaser exhibits an extremely small mode volume, a narrow linewidth Δλ, and a high Purcell factor that can facilitate the strong interaction between light and matter. This can be used as a refractive index sensor and is highly sensitive to local changes in the refractive indices of ambient materials. By careful design, the near-ultraviolet nanolaser sensors have significant sensing performances of glucose solutions, revealing a high sensitivity of 249 nm/RIU and high resolution, with a figure of merit of 1132, at the resonant wavelength of 373 nm

    Ultracompact Pseudowedge Plasmonic Lasers and Laser Arrays

    No full text
    Concentrating light at the deep subwavelength scale by utilizing plasmonic effects has been reported in various optoelectronic devices with intriguing phenomena and functionality. Plasmonic waveguides with a planar structure exhibit a two-dimensional degree of freedom for the surface plasmon; the degree of freedom can be further reduced by utilizing metallic nanostructures or nanoparticles for surface plasmon resonance. Reduction leads to different lightwave confinement capabilities, which can be utilized to construct plasmonic nanolaser cavities. However, most theoretical and experimental research efforts have focused on planar surface plasmon polariton (SPP) nanolasers. In this study, we combined nanometallic structures intersecting with ZnO nanowires and realized the first laser emission based on pseudowedge SPP waveguides. Relative to current plasmonic nanolasers, the pseudowedge plasmonic lasers reported in our study exhibit extremely small mode volumes, high group indices, high spontaneous emission factors, and high Purell factors beneficial for the strong interaction between light and matter. Furthermore, we demonstrated that compact plasmonic laser arrays can be constructed, which could benefit integrated plasmonic circuits
    corecore