17,949 research outputs found

    Model Calculation of Effective Three-Body Forces

    Full text link
    We propose a scheme for extracting an effective three-body interaction originating from a two-nucleon interaction. This is based on the Q-box method of Kuo and collaborators, where folded diagrams are obtained by differentiating a sum of non-folded diagrams with respect to the starting energy. To gain insight we have studied several examples using the Lipkin model where the perturbative approach can be compared with exact results. Numerically the three-body interactions can be significant and in a matrix example good accuracy was not obtained simultaneously for both eigenvalues with two-body interactions alone.Comment: 9 pages, Revtex4, 7 figs, submitted to PR

    Interdot Coulomb repulsion effect on the charge transport of parallel double single electron transistors

    Full text link
    The charge transport behaviors of parallel double single electron transistors (SETs) are investigated by the Anderson model with two impurity levels. The nonequilibrium Keldysh Green's technique is used to calculate the current-voltage characteristics of system. For SETs implemented by quantum dots (QDs) embedded into a thin SiO2SiO_2 layer, the interdot Coulomb repulsion is more important than the interdot electron hopping as a result of high potential barrier height between QDs and SiO2SiO_2. We found that the interdot Coulomb repulsion not onlyleads to new resonant levels, but also creates negative differential conductances.Comment: 12 pages, 7 figure

    Stem-root flow effect on soil–atmosphere interactions and uncertainty assessments

    Get PDF
    Abstract. Soil water can rapidly enter deeper layers via vertical redistribution of soil water through the stem–root flow mechanism. This study develops the stem–root flow parameterization scheme and coupled this scheme with the Simplified Simple Biosphere model (SSiB) to analyze its effects on land–atmospheric interactions. The SSiB model was tested in a single column mode using the Lien Hua Chih (LHC) measurements conducted in Taiwan and HAPEX-Mobilhy (HAPEX) measurements in France. The results show that stem–root flow generally caused a decrease in the moisture content at the top soil layer and moistened the deeper soil layers. Such soil moisture redistribution results in significant changes in heat flux exchange between land and atmosphere. In the humid environment at LHC, the stem–root flow effect on transpiration was minimal, and the main influence on energy flux was through reduced soil evaporation that led to higher soil temperature and greater sensible heat flux. In the Mediterranean environment of HAPEX, the stem–root flow significantly affected plant transpiration and soil evaporation, as well as associated changes in canopy and soil temperatures. However, the effect on transpiration could either be positive or negative depending on the relative changes in the moisture content of the top soil vs. deeper soil layers due to stem–root flow and soil moisture diffusion processes

    Rephasing invariance and the neutrino mu-tau symmetry

    Full text link
    The vacuum neutrino mixing is known to exhibit an approximate μτ\mu-\tau symmetry, which was shown to be preserved for neutrino propagating in matter. This symmetry reduces the neutrino transition probabilities to very simple forms when expressed in a rephasing invariant parametrization introduced earlier. Applications to long baseline experiments are discussed.Comment: 12 pages, 4 figure

    Low-momentum interactions with Brown-Rho-Ericson scalings and the density dependence of the nuclear symmetry energy

    Full text link
    We have calculated the nuclear symmetry energy Esym(ρ)E_{sym}(\rho) up to densities of 45ρ04 \sim 5 \rho_0 with the effects from the Brown-Rho (BR) and Ericson scalings for the in-medium mesons included. Using the VlowkV_{low-k} low-momentum interaction with and without such scalings, the equations of state (EOS) of symmetric and asymmetric nuclear matter have been calculated using a ring-diagarm formalism where the particle-particle-hole-hole ring diagrams are included to all orders. The EOS for symmetric nuclear matter and neutron matter obtained with linear BR scaling are both overly stiff compared with the empirical constraints of Danielewicz {\it et al.} \cite{daniel02}. In contrast, satisfactory results are obtained by either using the nonlinear Ericson scaling or by adding a Skyrme-type three-nucleon force (TNF) to the unscaled VlowkV_{low-k} interaction. Our results for Esym(ρ)E_{sym}(\rho) obtained with the nonlinear Ericson scaling are in good agreement with the empirical values of Tsang {\it et al.} \cite{tsang09} and Li {\it et al.} \cite{li05}, while those with TNF are slightly below these values. For densities below the nuclear saturation density ρ0\rho_0, the results of the above calculations are nearly equivalent to each other and all in satisfactory agreement with the empirical values.Comment: 7 pages, 6 figure

    Low Momentum Nucleon-Nucleon Interactions and Shell-Model Calculations

    Get PDF
    In the last few years, the low-momentum nucleon-nucleon (NN) interaction V-low-k derived from free-space NN potentials has been successfully used in shell-model calculations. V-low-k is a smooth potential which preserves the deuteron binding energy as well as the half-on-shell T-matrix of the original NN potential up to a momentum cutoff Lambda. In this paper we put to the test a new low-momentum NN potential derived from chiral perturbation theory at next-to-next-to-next-to-leading order with a sharp low-momentum cutoff at 2.1 fm-1. Shell-model calculations for the oxygen isotopes using effective hamiltonians derived from both types of low-momentum potential are performed. We find that the two potentials show the same perturbative behavior and yield very similar results.Comment: 8 pages, 8 figures, to be published in Physical Review

    Family of Hermitian Low-Momentum Nucleon Interactions with Phase Shift Equivalence

    Full text link
    Using a Schmidt orthogonalization transformation, a family of Hermitian low-momentum NN interactions is derived from the non-Hermitian Lee-Suzuki (LS) low-momentum NN interaction. As special cases, our transformation reproduces the Hermitian interactions for Okubo and Andreozzi. Aside from their common preservation of the deuteron binding energy, these Hermitian interactions are shown to be phase shift equivalent, all preserving the empirical phase shifts up to decimation scale Lambda. Employing a solvable matrix model, the Hermitian interactions given by different orthogonalization transformations are studied; the interactions can be very different from each other particularly when there is a strong intruder state influence. However, because the parent LS low-momentum NN interaction is only slightly non-Hermitian, the Hermitian low-momentum nucleon interactions given by our transformations, including the Okubo and Andreozzi ones, are all rather similar to each other. Shell model matrix elements given by the LS and several Hermitian low-momentum interactions are compared.Comment: 10 pages, 7 figure

    Quark Mass Matrices with Four and Five Texture Zeroes, and the CKM Matrix, in terms of Mass Eigenvalues

    Get PDF
    Using the triangular matrix techniques of Kuo et al and Chiu et al for the four and five texture zero cases, with vanishing (11) elements for U and D matrices, it is shown, from the general eigenvalue equations and hierarchy conditions, that the quark mass matrices, and the CKM matrix can be expressed (except for the phases) entirely in terms of quark masses. The matrix structures are then quite simple and transparent. We confirm their results for the five texture zero case but find, upon closer examination of all the CKM elements which our results provide, that six of their nine patterns for the four texture zero case are not compatible with experiments. In total, only one five-texture zero and three four-texture zero patterns are allowed.Comment: 15 pages, 3 table

    Approximate Treatment of Hermitian Effective Interactions and a Bound on the Error

    Full text link
    The Hermitian effective interaction can be well-approximated by (R+R^dagger)/2 if the eigenvalues of omega^dagger omega are small or state-independent(degenerate), where R is the standard non-Hermitian effective interaction and omega maps the model-space states onto the excluded space. An error bound on this approximation is given.Comment: 13 page
    corecore