18,233 research outputs found

    ENERGY EFFICIENCY OF DIFFERENT TENNIS RACKET STIFFNESS AND STRING TENSION DUE TO CENTER AND OFF-CENTER IMPACT

    Get PDF
    The purpose of this study was to investigate the power of vibration responses and moments of different racket flexibilities and string tensions following center and off-center impacts. Three rackets, classed as stiff, medium, and flexible by their manufacturers, were strung at three string tensions and subjected to 15 trials. The rackets were gripped on a KISTLER force plate and impacted at designated areas by a rigid ball. The stiff racket had smaller powers of vibration and twisting moment for each string tension in offcenter impact. The largest power of vibration and twisting moment occurred respectively in the flexible racket strung with 50pound and medium racket strung with 70 pound in offcenter impact

    Low Momentum Nucleon-Nucleon Interactions and Shell-Model Calculations

    Get PDF
    In the last few years, the low-momentum nucleon-nucleon (NN) interaction V-low-k derived from free-space NN potentials has been successfully used in shell-model calculations. V-low-k is a smooth potential which preserves the deuteron binding energy as well as the half-on-shell T-matrix of the original NN potential up to a momentum cutoff Lambda. In this paper we put to the test a new low-momentum NN potential derived from chiral perturbation theory at next-to-next-to-next-to-leading order with a sharp low-momentum cutoff at 2.1 fm-1. Shell-model calculations for the oxygen isotopes using effective hamiltonians derived from both types of low-momentum potential are performed. We find that the two potentials show the same perturbative behavior and yield very similar results.Comment: 8 pages, 8 figures, to be published in Physical Review

    Measurement of opaque film thickness

    Get PDF
    The theoretical and experimental framework for thickness measurements of thin metal films by low frequency thermal waves is described. Although it is assumed that the films are opaque and the substrates are comparatively poor thermal conductors, the theory is easily extended to other cases of technological interest. A brief description is given of the thermal waves and the experimental arrangement and parameters. The usefulness of the technique is illustrated for making absolute measurements of the thermal diffusivities of isotropic substrate materials. This measurement on pure elemental solids provides a check on the three dimensional theory in the limiting case of zero film thickness. The theoretical framework is then presented, along with numerical calculations and corresponding experimental results for the case of copper films on a glass substrate

    Determining the sign of Δ31\Delta_{31} at long baseline neutrino experiments

    Full text link
    Recently it is advocated that high intensity and low energy (Eν2GeV)(E_\nu \sim 2 GeV) neutrino beams should be built to probe the (13)(13) mixing angle ϕ\phi to a level of a few parts in 10410^4. Experiments using such beams will have better signal to background ratio in searches for νμνe\nu_\mu \to \nu_e oscillations. We propose that such experiments can also determine the sign of Δ31\Delta_{31} even if the beam consists of {\it neutrinos} only. By measuring the νμνe\nu_\mu \to \nu_e transitions in two different energy ranges, the effects due to propagation of neutrinos through earth's crust can be isolated and the sign of Δ31\Delta_{31} can be determined. If the sensitivity of an experiment to ϕ\phi is ϵ\epsilon, then the same experiment is automatically sensitive to matter effects and the sign of Δ31\Delta_{31} for values of ϕ2ϵ\phi \geq 2 \epsilon.Comment: Title changed and paper rewritten. 4 pages, 1 figure, revte

    Hermitian quark mass matrices with four texture zeros

    Get PDF
    We provide a complete and systematic analysis of hermitian, hierarchical quark mass matrices with four texture zeros. Using triangular mass matrices, each pattern of texture zeros is readily shown to lead to a definite relation between the CKM parameters and the quark masses. Nineteen pairs are found to be consistent with present data, and one other is marginally acceptable. In particular, no parallel structure between the up and down mass matrices is found to be favorable with data.Comment: 18 pages, no figure, references [8] and [10] adde

    Probing neutrino mass hierarchies and ϕ13\phi_{13} with supernova neutrinos

    Get PDF
    We investigate the feasibility of probing the neutrino mass hierarchy and the mixing angle ϕ13\phi_{13} with the neutrino burst from a future supernova. An inverse power-law density ρrn\rho \sim r^{n} with varying nn is adopted in the analysis as the density profile of a typical core-collapse supernova. The survival probabilities of νe\nu_{e} and νˉe\bar{\nu}_{e} are shown to reduce to two-dimensional functions of nn and ϕ13\phi_{13}. It is found that in the nsin2ϕ13n-\sin^{2} \phi_{13} parameter space, the 3D plots of the probability functions exhibit highly non-trivial structures that are sensitive to the mass hierarchy, the mixing angle ϕ13\phi_{13}, and the value of nn. The conditions that lead to observable differences in the 3D plots are established. With the uncertainty of nn considered, a qualitative analysis of the Earth matter effect is also included.Comment: 16 pages, 3 figures. Ref [11] added, and some typos correcte

    Solar Neutrinos with Three Flavor Mixings

    Get PDF
    The recent 71Ga solar neutrino observation is combined with the 37Cl and Kamiokande-II observations in an analysis for neutrino masses and mixings. The allowed parameter region is found for matter enhanced mixings among all three neutrino flavors. Distortions of the solar neutrino spectrum unique to three flavors are possible and may be observed in continuing and next generation experiments.Comment: August 1992 (Revised) PURD-TH-92-

    Gravitons and Lightcone Fluctuations II: Correlation Functions

    Get PDF
    A model of a fluctuating lightcone due to a bath of gravitons is further investigated. The flight times of photons between a source and a detector may be either longer or shorter than the light propagation time in the background classical spacetime, and will form a Gaussian distribution centered around the classical flight time. However, a pair of photons emitted in rapid succession will tend to have correlated flight times. We derive and discuss a correlation function which describes this effect. This enables us to understand more fully the operational significance of a fluctuating lightcone. Our results may be combined with observational data on pulsar timing to place some constraints on the quantum state of cosmological gravitons.Comment: 16 pages and two figures, uses eps
    corecore