16,821 research outputs found
Low-momentum ring diagrams of neutron matter at and near the unitary limit
We study neutron matter at and near the unitary limit using a low-momentum
ring diagram approach. By slightly tuning the meson-exchange CD-Bonn potential,
neutron-neutron potentials with various scattering lengths such as
and are constructed. Such potentials are renormalized
with rigorous procedures to give the corresponding -equivalent
low-momentum potentials , with which the low-momentum
particle-particle hole-hole ring diagrams are summed up to all orders, giving
the ground state energy of neutron matter for various scattering lengths.
At the limit of , our calculated ratio of to that of
the non-interacting case is found remarkably close to a constant of 0.44 over a
wide range of Fermi-momenta. This result reveals an universality that is well
consistent with the recent experimental and Monte-Carlo computational study on
low-density cold Fermi gas at the unitary limit. The overall behavior of this
ratio obtained with various scattering lengths is presented and discussed.
Ring-diagram results obtained with and those with -matrix
interactions are compared.Comment: 9 pages, 7 figure
Bifurcation in electrostatic resistive drift wave turbulence
The Hasegawa-Wakatani equations, coupling plasma density and electrostatic
potential through an approximation to the physics of parallel electron motions,
are a simple model that describes resistive drift wave turbulence. We present
numerical analyses of bifurcation phenomena in the model that provide new
insights into the interactions between turbulence and zonal flows in the
tokamak plasma edge region. The simulation results show a regime where, after
an initial transient, drift wave turbulence is suppressed through zonal flow
generation. As a parameter controlling the strength of the turbulence is tuned,
this zonal flow dominated state is rapidly destroyed and a turbulence-dominated
state re-emerges. The transition is explained in terms of the Kelvin-Helmholtz
stability of zonal flows. This is the first observation of an upshift of
turbulence onset in the resistive drift wave system, which is analogous to the
well-known Dimits shift in turbulence driven by ion temperature gradients.Comment: 21 pages, 11 figure
The search for and identification of amino acids, nucleobases and nucleosides in samples returned from Mars
An investigation of the returned Mars samples for biologically important organic compounds, with emphasis on amino acid, the puring and pyrimidine bases, and nucleosides is proposed. These studies would be conducted on subsurface samples obtained by drilling past the surface oxidizing layer with emphasis on samples containing the larges quantities of organic carbon as determined by the rover gas chromatographic mass spectrometer (GCMS). Extraction of these molecules from the returned samples will be performed using the hydrothermal extraction technique described by Cheng and Ponnamperuma. More rigorous extraction methods will be developed and evaluated. For analysis of the extract for free amino acids or amino acids present in a bound or peptidic form, aliquots will be analyzed by capillary GCMS both before and after hydrolysis with 6N hydrochloric acid. Establishment of the presence of amino acids would then lead to the next logical step which would be the use of chiral stationary gas chromatography phases to determine the enatiomeic composition of the amino acids present, and thus potentially establish their biotic or abiotic origin. Confirmational analyses for amino acids would include ion-exchange and reversed-phase liquid chromatographic analysis. For analyses of the returned Mars samples for nucleobases and nucleosides, affinity and reversed-phase liquid chromatography would be utilized. This technology coupled with scanning UV detection for identification, presents a powerful tool for nucleobase and nucleoside analysis. Mass spectrometric analysis of these compounds would confirm their presence in samples returned form Mars
The search for an identification of amino acids, nucleobases and nucleosides in samples returned from Mars
The Mars Sample Return mission will provide us with a unique source of material from our solar system; material which could advance our knowledge of the processes of chemical evolution. As has been pointed out, Mars geological investigations based on the Viking datasets have shown that primordial Mars was in many biologically important ways similar to the primordial Earth; the presence of surface liquid water, moderate surface temperatures, and atmosphere of carbon dioxide and nitrogen, and high geothermal heat flow. Indeed, it would seem that conditions on Earth and Mars were fundamentally similar during the first one billion years or so. As has been pointed out, Mars may well contain the best preserved record of the events that transpired on the early planets. Examination of that early record will involve searching for many things, from microfossils to isotopic abundance data. We propose an investigation of the returned Mars samples for biologically important organic compounds, with emphases on amino acids, the purine and pyrimidine bases, and nucleosides
A manned exobiology laboratory based on the Moon
Establishment of an exobiology laboratory on the Moon would provide a unique opportunity for exploration of extraterrestrial materials on a long-term, ongoing basis, for elucidation of exobiological processes and chemical evolution. A major function of the lunar exobiology laboratory would be to examine samples collected from other planets (e.g., Mars) for the presence of extant or extinct life. By establishing a laboratory on the Moon, preliminary analyses could be conducted away from Earth, thus establishing that extraterrestrial materials are benign before their return to Earth for more extensive investigations. The Moon-based exobiology laboratory would have three major components for study of samples returned from other planets: (1) the search for extant life - this component would focus on the detection and identification of life forms using biological, physical, and chemical methods; (2) the search for extinct life - this component would concentrate on identification of extinct life using micropaleontological physical and chemical means; and (3) the search and evidence of chemical evolution - this component would be devoted to the detection and identification of molecules revealing prebiotic chemical evolution
An econometric analysis of SARS and Avian flu on international tourist arrivals to Asia
This paper compares the impacts of SARS and human deaths arising from Avian Flu on international tourist arrivals to Asia. The effects of SARS and human deaths from Avian Flu will be compared directly according to human deaths. The nature of the short run and long run relationship is examined empirically by estimating a static line fixed effect model and a difference transformation dynamic model, respectively. Empirical results from the static fixed effect and difference transformation dynamic models are consistent, and indicate that both the short run and long run SARS effect have a more significant impact on international tourist arrivals than does Avian Flu. In addition, the effects of deaths arising from both SARS and Avian Flu suggest that SARS is more important to international tourist arrivals than is Avian Flu. Thus, while Avian Flu is here to stay, its effect is currently not as significant as that of SARS.Avian flu;international tourism;SARS;dynamic panel data model;static fixed effects model
Unitarity potentials and neutron matter at the unitary limit
We study the equation of state of neutron matter using a family of unitarity
potentials all of which are constructed to have infinite scattering
lengths . For such system, a quantity of much interest is the ratio
where is the true ground-state energy of the system,
and is that for the non-interacting system. In the limit of
, often referred to as the unitary limit, this ratio is
expected to approach a universal constant, namely . In the
present work we calculate this ratio using a family of hard-core
square-well potentials whose can be exactly obtained, thus enabling us to
have many potentials of different ranges and strengths, all with infinite
. We have also calculated using a unitarity CDBonn potential
obtained by slightly scaling its meson parameters. The ratios given by
these different unitarity potentials are all close to each other and also
remarkably close to 0.44, suggesting that the above ratio is indifferent
to the details of the underlying interactions as long as they have infinite
scattering length. A sum-rule and scaling constraint for the renormalized
low-momentum interaction in neutron matter at the unitary limit is discussed.Comment: 7.5 pages, 7 figure
Glueball matrix elements on anisotropic lattices
We describe a lattice calculation of the matrix elements relevant for
glueball production in radiative decays. The techniques for such a
calculation on anisotropic lattices with an improved action are outlined. We
present preliminary results showing the efficacy of the computational method.Comment: 3 pages (LaTeX), 3 figures (PostScript), Presented at Lattice '9
Raman spectroscopy of epitaxial graphene on a SiC substrate
The fabrication of epitaxial graphene (EG) on SiC substrate by annealing has
attracted a lot of interest as it may speed up the application of graphene for
future electronic devices. The interaction of EG and the SiC substrate is
critical to its electronic and physical properties. In this work, Raman
spectroscopy was used to study the structure of EG and its interaction with SiC
substrate. All the Raman bands of EG blue shift from that of bulk graphite and
graphene made by micromechanical cleavage, which was attributed to the
compressive strain induced by the substrate. A model containing 13 x 13
honeycomb lattice cells of graphene on carbon nanomesh was constructed to
explain the origin of strain. The lattice mismatch between graphene layer and
substrate causes the compressive stress of 2.27 GPa on graphene. We also
demonstrate that the electronic structures of EG grown on Si and C terminated
SiC substrates are quite different. Our experimental results shed light on the
interaction between graphene and SiC substrate that are critical to the future
applications of EG.Comment: 20 pages, 5 figure
- …