92 research outputs found

    EFFECTS OF CONCENTRIC VERSUS ECCENTRIC TRAINING ON MUSCLE STRENGTH AND NEUROMUSCULAR ACTIVATION

    Get PDF
    Eccentric contraction (EC) involves fewer motor units but produces more tension than concentric contraction (CC) (Kay, 2000). Both EC and CC training can stimulate strength gain (Miller, 2006). However, it is not clear whether one method is more effective than the other and the effect of each training on motor units recruited after training. The purpose of this study was to compare the effects of EC and CC isokinetic training exercises on quadriceps muscle strength and neuromuscular activations

    DIFFERENCES BETWEEN CONCENTRIC AND ECCENTRIC CONTRACTION INDUCED MUSCLE FATIGUE

    Get PDF
    Studies of neuromuscular activation often evaluated through isometric contractions. However, this type of contraction may not truly represent muscle actions during activities. EMG analysis is not only used to determine motor unit activations, but also used to determine muscle conduction velocity by transforming signals into frequency spectrum. Studies have shown that fatigue mucles produced a relativly slower conduction velocity measured by mean power frequency (MPF). Therefore, the purpose of this study was to compare the effects of muscle fatigue generated by two different types of contraction. We hypothesized that muscle fatigue generated by concentric contractions (CC) would cause gretaer muscle contraction frequency reduction than eccentric contractions (EC)

    Regulation of neurocoel morphogenesis by Pard6γb

    Get PDF
    AbstractThe Par3/Par6/aPKC protein complex plays a key role in the establishment and maintenance of apicobasal polarity, a cellular characteristic essential for tissue and organ morphogenesis, differentiation and homeostasis. During a forward genetic screen for liver and pancreas mutants, we identified a pard6γb mutant, representing the first known pard6 mutant in a vertebrate organism. pard6γb mutants exhibit defects in epithelial tissue development as well as multiple lumens in the neural tube. Analyses of the cells lining the neural tube cavity, or neurocoel, in wildtype and pard6γb mutant embryos show that lack of Pard6γb function leads to defects in mitotic spindle orientation during neurulation. We also found that the PB1 (aPKC-binding) and CRIB (Cdc-42-binding) domains and the KPLG amino acid sequence within the PDZ domain (Pals1-and Crumbs binding) are not required for Pard6γb localization but are essential for its function in neurocoel morphogenesis. Apical membranes are reduced, but not completely absent, in mutants lacking the zygotic, or both the maternal and zygotic, function of pard6γb, leading us to examine the localization and function of the three additional zebrafish Pard6 proteins. We found that Pard6α, but not Pard6β or Pard6γa, could partially rescue the pard6γbs441 mutant phenotypes. Altogether, these data indicate a previously unappreciated functional diversity and complexity within the vertebrate pard6 gene family

    RPA vs. exact shell-model correlation energies

    Full text link
    The random phase approximation (RPA) builds in correlations left out by mean-field theory. In full 0-hbar-omega shell-model spaces we calculate the Hartree-Fock + RPA binding energy, and compare it to exact diagonalization. We find that in general HF+RPA gives a very good approximation to the ``exact'' ground state energy. In those cases where RPA is less satisfactory, however, there is no obvious correlation with properties of the HF state, such as deformation or overlap with the exact ground state wavefunction.Comment: 6 pages, 7 figures, submitted to Phys Rev

    Measurement of the azimuthal anisotropy of Y(1S) and Y(2S) mesons in PbPb collisions at √S^{S}NN = 5.02 TeV

    Get PDF
    The second-order Fourier coefficients (υ2_{2}) characterizing the azimuthal distributions of Υ(1S) and Υ(2S) mesons produced in PbPb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV are studied. The Υmesons are reconstructed in their dimuon decay channel, as measured by the CMS detector. The collected data set corresponds to an integrated luminosity of 1.7 nb1^{-1}. The scalar product method is used to extract the υ2_{2} coefficients of the azimuthal distributions. Results are reported for the rapidity range |y| < 2.4, in the transverse momentum interval 0 < pT_{T} < 50 GeV/c, and in three centrality ranges of 10–30%, 30–50% and 50–90%. In contrast to the J/ψ mesons, the measured υ2_{2} values for the Υ mesons are found to be consistent with zero

    Measurement of prompt D0^{0} and D\overline{D}0^{0} meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at root SNN\sqrt{S_{NN}} = 5.02 TeV

    Get PDF
    The strong Coulomb field created in ultrarelativistic heavy ion collisions is expected to produce a rapiditydependent difference (Av2) in the second Fourier coefficient of the azimuthal distribution (elliptic flow, v2) between D0 (uc) and D0 (uc) mesons. Motivated by the search for evidence of this field, the CMS detector at the LHC is used to perform the first measurement of Av2. The rapidity-averaged value is found to be (Av2) = 0.001 ? 0.001 (stat)? 0.003 (syst) in PbPb collisions at ?sNN = 5.02 TeV. In addition, the influence of the collision geometry is explored by measuring the D0 and D0mesons v2 and triangular flow coefficient (v3) as functions of rapidity, transverse momentum (pT), and event centrality (a measure of the overlap of the two Pb nuclei). A clear centrality dependence of prompt D0 meson v2 values is observed, while the v3 is largely independent of centrality. These trends are consistent with expectations of flow driven by the initial-state geometry. ? 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY licens

    Performance of reconstruction and identification of τ leptons decaying to hadrons and vτ in pp collisions at √s=13 TeV

    Get PDF
    The algorithm developed by the CMS Collaboration to reconstruct and identify τ leptons produced in proton-proton collisions at √s=7 and 8 TeV, via their decays to hadrons and a neutrino, has been significantly improved. The changes include a revised reconstruction of π⁰ candidates, and improvements in multivariate discriminants to separate τ leptons from jets and electrons. The algorithm is extended to reconstruct τ leptons in highly Lorentz-boosted pair production, and in the high-level trigger. The performance of the algorithm is studied using proton-proton collisions recorded during 2016 at √s=13 TeV, corresponding to an integrated luminosity of 35.9 fb¯¹. The performance is evaluated in terms of the efficiency for a genuine τ lepton to pass the identification criteria and of the probabilities for jets, electrons, and muons to be misidentified as τ leptons. The results are found to be very close to those expected from Monte Carlo simulation

    Performance of the CMS Level-1 trigger in proton-proton collisions at √s = 13 TeV

    Get PDF
    At the start of Run 2 in 2015, the LHC delivered proton-proton collisions at a center-of-mass energy of 13\TeV. During Run 2 (years 2015–2018) the LHC eventually reached a luminosity of 2.1× 1034^{34} cm2^{-2}s1^{-1}, almost three times that reached during Run 1 (2009–2013) and a factor of two larger than the LHC design value, leading to events with up to a mean of about 50 simultaneous inelastic proton-proton collisions per bunch crossing (pileup). The CMS Level-1 trigger was upgraded prior to 2016 to improve the selection of physics events in the challenging conditions posed by the second run of the LHC. This paper describes the performance of the CMS Level-1 trigger upgrade during the data taking period of 2016–2018. The upgraded trigger implements pattern recognition and boosted decision tree regression techniques for muon reconstruction, includes pileup subtraction for jets and energy sums, and incorporates pileup-dependent isolation requirements for electrons and tau leptons. In addition, the new trigger calculates high-level quantities such as the invariant mass of pairs of reconstructed particles. The upgrade reduces the trigger rate from background processes and improves the trigger efficiency for a wide variety of physics signals

    Studies of charm and beauty hadron long-range correlations in pp and pPb collisions at LHC energies

    Get PDF

    Measurement of the Y(1S) pair production cross section and search for resonances decaying to Y(1S)μ⁺μ⁻ in proton-proton collisions at √s = 13 TeV

    Get PDF
    The fiducial cross section for Y(1S)pair production in proton-proton collisions at a center-of-mass energy of 13TeVin the region where both Y(1S)mesons have an absolute rapidity below 2.0 is measured to be 79 ± 11 (stat) ±6 (syst) ±3 (B)pbassuming the mesons are produced unpolarized. The last uncertainty corresponds to the uncertainty in the Y(1S)meson dimuon branching fraction. The measurement is performed in the final state with four muons using proton-proton collision data collected in 2016 by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9fb1^{-1}. This process serves as a standard model reference in a search for narrow resonances decaying to Y(1S)μ+^{+}μ^{-} in the same final state. Such a resonance could indicate the existence of a tetraquark that is a bound state of two bquarks and two b̅ antiquarks. The tetraquark search is performed for masses in the vicinity of four times the bottom quark mass, between 17.5 and 19.5GeV, while a generic search for other resonances is performed for masses between 16.5 and 27GeV. No significant excess of events compatible with a narrow resonance is observed in the data. Limits on the production cross section times branching fraction to four muons via an intermediate Y(1S)resonance are set as a function of the resonance mass
    corecore