40 research outputs found

    Role of Glutathione in the Regulation of Cisplatin Resistance in Cancer Chemotherapy

    Get PDF
    Three mechanisms have been proposed for the role of glutathione (GSH) in regulating cisplatin (CDDP) sensitivities that affects its ultimate cell-killing ability: (i) GSH may serve as a cofactor in facilitating multidrug resistance protein 2- (MRP2-) mediated CDDP efflux in mammalian cells, since MRP2-transfected cells were shown to confer CDDP resistance; (ii) GSH may serve as a redox-regulating cytoprotector based on the observations that many CDDP-resistant cells overexpress GSH and γ-glutamylcysteine synthesis (γ-GCS), the rate-limiting enzyme for GSH biosynthesis; (iii) GSH may function as a copper (Cu) chelator. Elevated GSH expression depletes the cellular bioavailable Cu pool, resulting in upregulation of the high-affinity Cu transporter (hCtr1) which is also a CDDP transporter. This has been demonstrated that overexpression of GSH by transfection with γ-GCS conferred sensitization to CDDP toxicity. This review describes how these three models were developed and critically reviews their importance to overall CDDP cytotoxicity in cancer cell treatments

    Targeted cellular metabolism for cancer chemotherapy with recombinant arginine-degrading enzymes

    Get PDF
    It has been shown that a subset of human cancers, notably, melanoma and hepatocellular carcinoma (HCC) are auxotrophic for arginine (Arg), because they do not express argininosuccinate synthetase (ASS), the rate-limiting enzyme for the biosynthesis of arginine from citrulline. These ASS-negative cancer cells require Arg from extracellular sources for survival. When they are exposed to recombinant Arg-degrading enzymes, e.g. arginine deiminase (ADI) or arginase, they die because of Arg starvation; whereas normal cells which express ASS are able to survive. A pegylated ADI (ADI-PEG20) has been developed for clinical trials for advanced melanoma and HCC; and favorable results have been obtained. ADI-PEG20 treatment induces autophagy in auxotrophic cancer cells leading to cell death. Clinical studies in melanoma patients show that re-expression of ASS is associated with ADI-PEG20 resistance. ADI-PEG20 treatment down-regulates the expression of HIF-1α but up-regulates c-Myc in culture melanoma cells. Induction of ASS by ADI-PEG20 involves positive regulators c-Myc and Sp4 and negative regulator HIF1α. Since both HIF-1α and c-Myc play important roles in cancer cell energy metabolism, together these results suggest that targeted cancer cell metabolism through modulation of HIF-1α and c-Myc expression may improve the efficacy of ADI-PEG20 in treating Arg auxotrophic tumors

    A Dose Escalation Study of Trientine Plus Carboplatin and Pegylated Liposomal Doxorubicin in Women With a First Relapse of Epithelial Ovarian, Tubal, and Peritoneal Cancer Within 12 Months After Platinum-Based Chemotherapy

    Get PDF
    Background: Epithelial ovarian cancer (EOC) is the leading cause of gynecological cancer-related deaths worldwide. Preclinical studies found that copper-lowering agents could re-sensitize platinum-resistant cancer cells by enhancing the human copper transporter 1 (hCtr1)-mediated uptake of platinum. In the clinic, re-sensitization of platinum-resistance in relapsed EOC has been discovered by the application of trientine plus platinum (NCT01178112). However, no pharmacokinetic data of trientine has been reported in cancer patients.Purpose: Our study aimed to explore the safety and activity of trientine combined with carboplatin and pegylated liposomal doxorubicin (PLD) in patients with EOC, tubal, and peritoneal cancer who experienced disease progression during platinum-based chemotherapy or showed relapse <12 months after completing first-line chemotherapy. Also, we aimed to demonstrate pharmacokinetic parameters and to discover potential biomarkers in our EOC patients.Methods: In this dose escalation study, 18 Asian patients in six dosing cohorts received fixed doses of carboplatin (AUC 4) and PLD (LipoDox®, TTY Biopharm Co. Ltd., Taipei, Taiwan) (40 mg/m2, day 1 per 4-week cycle), and escalated daily trientine doses (range: 300–1800 mg; initiated 7 days before the 1st combination cycle) according to a 3 + 3 design.Results: No dose-limiting toxicity or treatment-related death was observed. Four patients (22.2%) developed grade 3 drug-related adverse events (AEs), whereas no grade 4 AEs were encountered. Anemia and grade 2 dizziness were the most common hematological toxicity and neurotoxicity, respectively. In a pharmacokinetics comparison with healthy volunteers in the literature, our patients achieved greater absorption after oral trientinem, and more rapid elimination of triethylenetetramine dihydrochloride at high doses. The clinical benefit rate was 33.3 and 50.0% in the platinum-resistant and the partially platinum-sensitive group, respectively. A high baseline serum iron level and low serum copper level might help differentiate subgroups of patients with different clinical responses. Nevertheless, no associations of the clinical response with the levels of serum hCtr1, ceruloplasmin, or copper were observed.Conclusion: Combination therapy with carboplatin, trientine, and PLD was well-tolerated and safe. Our results encourage the development of a future phase II trial.Clinical trial registration:ClinicalTrials.gov # NCT03480750

    Targeted Delivery of Chemotherapy Agents Using a Liver Cancer-Specific Aptamer

    Get PDF
    Using antibody/aptamer-drug conjugates can be a promising method for decreasing toxicity, while increasing the efficiency of chemotherapy.In this study, the antitumor agent Doxorubicin (Dox) was incorporated into the modified DNA aptamer TLS11a-GC, which specifically targets LH86, a human hepatocellular carcinoma cell line. Cell viability tests demonstrated that the TLS11a-GC-Dox conjugates exhibited both potency and target specificity. Importantly, intercalating Dox into the modified aptamer inhibited nonspecific uptake of membrane-permeable Dox to the non-target cell line. Since the conjugates are selective for cells that express higher amounts of target proteins, both criteria noted above are met, making TLS11a-GC-Dox conjugates potential candidates for targeted delivery to liver cancer cells.Considering the large number of available aptamers that have specific targets for a wide variety of cancer cells, this novel aptamer-drug intercalation method will have promising implications for chemotherapeutics in general

    EFFECTS OF BLEOMYCIN ON DNA AND MAMMALIAN CHROMOSOMES.

    No full text
    Abstract not availabl
    corecore