32 research outputs found

    Clinical applicability of quantitative nailfold capillaroscopy in differential diagnosis of connective tissue diseases with Raynaud's phenomenon

    Get PDF
    Background/PurposeNailfold capillaroscopy is a useful tool to distinguish primary from secondary Raynaud's phenomenon (RP) by examining the morphology of nailfold capillaries but its role in disease diagnosis is not clearly established. The purpose of this study was to evaluate the roles of quantitative nailfold capillaroscopy in differential diagnosis of connective tissue diseases (CTDs) with RP.MethodsThe data between the year 2005 and 2009 were retrieved from the nailfold capillaroscopic database of National Taiwan University Hospital (NTUH). Only the data from the patients with RP were analyzed. The criteria for interpretation of capillaroscopic findings were predefined. The final diagnoses of the patients were based on the American College of Rheumatology classification criteria for individual diseases, independent of nailfold capillaroscopic findings. The sensitivity and the specificity of each capillaroscopic pattern to the diseases were determined.ResultsThe data from a total of 67 patients were qualified for the current study. We found the sensitivity and specificity of scleroderma pattern for systemic sclerosis (SSc) were 89.47% and 80%, and the specificity of the early, active, and late scleroderma patterns for SSc reached 87.5%, 97.5%, and 95%, respectively. The sensitivity/specificity of systemic lupus erythematosus (SLE) pattern for SLE and polymyositis/dermatomyositis (PM/DM) pattern for PM/DM were 33.33%/95.45% and 60%/96.3%, respectively. The sensitivity/specificity of mixed connective tissue disease (MCTD) pattern for MCTD were 20%/100%.ConclusionThe nailfold capillaroscopic (NC) patterns may be useful in the differential diagnosis of CTDs with RP. The NC patterns for SSc and PM/DM are both sensitive and specific to the diseases, while the SLE and MCTD patterns exhibit high specificity but relatively low sensitivity

    One-pot synthesis of poly (3,4-ethylenedioxythiophene)-Pt nanoparticle composite and its application to electrochemical H2O2 sensor.

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Poly(3,4-ethylenedioxythiophene)-Pt nanoparticle composite was synthesized in one-pot fashion using a photo-assisted chemical method, and its electrocatalytic properties toward hydrogen peroxide (H2O2) was investigated. Under UV irradiation, the rates of the oxidative polymerization of EDOT monomer along with the reduction of Pt4+ ions were accelerated. In addition, the morphology of PtNPs was also greatly influenced by the UV irradiation; the size of PtNPs was reduced under UV irradiation, which can be attributed to the faster nucleation rate. The immobilized PtNPs showed excellent electrocatalytic activities towards the electroreduction of hydrogen peroxide. The resultant amperometric sensor showed enhanced sensitivity for the detection of H2O2 as compared to that without PtNPs, i.e., only with a layer of PEDOT. Amperometric determination of H2O2 at -0.55 V gave a limit of detection of 1.6 μM (S / N = 3) and a sensitivity of 19.29 mA cm-2 M-1 up to 6 mM, with a response time (steady state, t95) of 30 to 40 s. Energy dispersive X-ray analysis, transmission electron microscopic image, cyclic voltammetry (CV), and scanning electron microscopic images were utilized to characterize the modified electrode. Sensing properties of the modified electrode were studied both by CV and amperometric analysis

    Surface Second Harmonic Generation from Topological Dirac Semimetal PdTe2_2

    Full text link
    Recent experiments and calculations in topological semimetals have observed anomalously strong second-order optical nonlinearity, but yet whether the enhancement also occurs at surfaces of topological semimetals in general remains an open question. In this work, we tackle this problem by measuring polarization-dependent and rotational-anisotropy optical second harmonic generation (SHG) from centrosymmetric type-II Dirac semimetal PdTe2_2. We found the SHG to follow C3v_{3v} surface symmetry with a time-varying intensity dictated by the oxidation kinetics of the material after its surface cleavage, indicating the surface origin of SHG. Quantitative characterization of the surface nonlinear susceptibility indicates a large out-of-plane response of PdTe2_2 with ∣χccc(2)∣|\chi_{ccc}^{(2)}| up to 25 ×\times 10−18^{-18} m2^2/V. Our results support the topological surfaces/interfaces as a new route toward applications of nonlinear optical effects with released symmetry constraints, and demonstrate SHG as a viable means to in situ study of kinetics of topological surfaces

    Atomic-scale study of type-II Dirac semimetal PtTe2 surface

    Full text link
    Dirac semimetals (DSM) host linear bulk bands and topologically protected surface states, giving rise to exotic and robust properties. Platinum ditelluride (PtTe2) belongs to this interesting group of topological materials. Here, we employ scanning tunneling microscopy (STM) in combination with first-principles calculations to visualize and identify the native defects at the surface of a freshly cleaved PtTe2 crystal. Around these defects, short-wavelength electron density oscillations are observed. Fourier transform analysis of the energy-dependent quasiparticle interference patterns is in good agreement with our calculated joint density of states, demonstrating the singular properties of the surface of this type-II DSM. Our results evidence the power of STM in understanding the surface of topological material

    Terahertz nonlinear hall rectifiers based on spin-polarized topological electronic states in 1T-CoTe2

    Full text link
    The zero-magnetic-field nonlinear Hall effect (NLHE) refers to the second-order transverse current induced by an applied alternating electric field; it indicates the topological properties of inversion-symmetry-breaking crystals. Despite several studies on the NLHE induced by the Berry-curvature dipole in Weyl semimetals, the direct current conversion by rectification is limited to very low driving frequencies and cryogenic temperatures. The nonlinear photoresponse generated by the NLHE at room temperature can be useful for numerous applications in communication, sensing, and photodetection across a high bandwidth. In this study, observations of the second-order NLHE in type-II Dirac semimetal CoTe2 under time-reversal symmetry are reported. This is determined by the disorder-induced extrinsic contribution on the broken-inversion-symmetry surface and room-temperature terahertz rectification without the need for semiconductor junctions or bias voltage. It is shown that remarkable photoresponsivity over 0.1 A W−1, a response time of approximately 710 ns, and a mean noise equivalent power of 1 pW Hz−1/2 can be achieved at room temperature. The results open a new pathway for low-energy photon harvesting via nonlinear rectification induced by the NLHE in strongly spin–orbit-coupled and inversion-symmetry-breaking systems, promising a considerable impact in the field of infrared/terahertz photonicsPID2019–109525RB-I00, CEX2018-000805-M, EU’s H2020 NFFA-Europe (n. 654360), and NFFA-Europe-Pilot (10100741

    Women with endometriosis have higher comorbidities: Analysis of domestic data in Taiwan

    Get PDF
    AbstractEndometriosis, defined by the presence of viable extrauterine endometrial glands and stroma, can grow or bleed cyclically, and possesses characteristics including a destructive, invasive, and metastatic nature. Since endometriosis may result in pelvic inflammation, adhesion, chronic pain, and infertility, and can progress to biologically malignant tumors, it is a long-term major health issue in women of reproductive age. In this review, we analyze the Taiwan domestic research addressing associations between endometriosis and other diseases. Concerning malignant tumors, we identified four studies on the links between endometriosis and ovarian cancer, one on breast cancer, two on endometrial cancer, one on colorectal cancer, and one on other malignancies, as well as one on associations between endometriosis and irritable bowel syndrome, one on links with migraine headache, three on links with pelvic inflammatory diseases, four on links with infertility, four on links with obesity, four on links with chronic liver disease, four on links with rheumatoid arthritis, four on links with chronic renal disease, five on links with diabetes mellitus, and five on links with cardiovascular diseases (hypertension, hyperlipidemia, etc.). The data available to date support that women with endometriosis might be at risk of some chronic illnesses and certain malignancies, although we consider the evidence for some comorbidities to be of low quality, for example, the association between colon cancer and adenomyosis/endometriosis. We still believe that the risk of comorbidity might be higher in women with endometriosis than that we supposed before. More research is needed to determine whether women with endometriosis are really at risk of these comorbidities

    Two-dimensional superconductivity and magnetotransport from topological surface states in AuSn4 semimetal

    No full text
    Surface states of topological semimetals may give rise to unusual transport properties and topological superconductivity. Here, the H-T phase diagram of AuSn4 is experimentally established, displaying 2D superconductivity, Bose metal behavior, and normal-state magnetotransport driven by surface states

    Tin Diselenide (SnSe2) Van der Waals Semiconductor: Surface Chemical Reactivity, Ambient Stability, Chemical and Optical Sensors

    No full text
    Tin diselenide (SnSe2) is a layered semiconductor with broad application capabilities in the fields of energy storage, photocatalysis, and photodetection. Here, we correlate the physicochemical properties of this van der Waals semiconductor to sensing applications for detecting chemical species (chemosensors) and millimeter waves (terahertz photodetectors) by combining experiments of high-resolution electron energy loss spectroscopy and X-ray photoelectron spectroscopy with density functional theory. The response of the pristine, defective, and oxidized SnSe2 surface towards H2, H2O, H2S, NH3, and NO2 analytes was investigated. Furthermore, the effects of the thickness were assessed for monolayer, bilayer, and bulk samples of SnSe2. The formation of a sub-nanometric SnO2 skin over the SnSe2 surface (self-assembled SnO2/SnSe2 heterostructure) corresponds to a strong adsorption of all analytes. The formation of non-covalent bonds between SnO2 and analytes corresponds to an increase of the magnitude of the transferred charge. The theoretical model nicely fits experimental data on gas response to analytes, validating the SnO2/SnSe2 heterostructure as a suitable playground for sensing of noxious gases, with sensitivities of 0.43, 2.13, 0.11, 1.06 [ppm]−1 for H2, H2S, NH3, and NO2, respectively. The corresponding limit of detection is 5 ppm, 10 ppb, 250 ppb, and 400 ppb for H2, H2S, NH3, and NO2, respectively. Furthermore, SnSe2-based sensors are also suitable for fast large-area imaging applications at room temperature for millimeter waves in the THz range
    corecore