14,679 research outputs found

    GA tuning of pitch controller for small scale MAVs

    Get PDF
    The paper presents the application of intelligent tuning methods for the control of a prototype MAV in order to address problems associated with bandwidth limited actuators and gust alleviation. Specifically, as a proof of concept, the investigation is focused on the pitch control of a MAV. The work is supported by experimental results from wind tunnel testing that shows the merits of the use of Genetic Algorithm (GA) tuning techniques compared to classical, empirical tuning methodologies. To provide a measure of relative merit, the controller responses are evaluated using the ITAE performance index. In this way, the proposed method is shown to induce far superior dynamic performance compared to traditional approaches

    Spin gap behavior in Cu2_2Sc2_2Ge4_4O13_{13} by 45^{45}Sc nuclear magnetic resonance

    Full text link
    We report the results of a 45^{45}Sc nuclear magnetic resonance (NMR) study on the quasi-one-dimensional compound Cu2_2Sc2_2Ge4_4O13_{13} at temperatures between 4 and 300 K. This material has been a subject of current interest due to indications of spin gap behavior. The temperature-dependent NMR shift exhibits a character of low-dimensional magnetism with a negative broad maximum at TmaxT_{max} \simeq 170 K. Below % T_{max}, the NMR shifts and spin lattice relaxation rates clearly indicate activated responses, confirming the existence of a spin gap in Cu2_2Sc2_2Ge% 4_4O13_{13}. The experimental NMR data can be well fitted to the spin dimer model, yielding a spin gap value of about 275 K which is close to the 25 meV peak found in the inelastic neutron scattering measurement. A detailed analysis further points out that the nearly isolated dimer picture is proper for the understanding of spin gap nature in Cu2_2Sc2_2Ge4_4O13_{13}.Comment: 4 pages, 6 figures, submitted to Phys. Rev.

    Low-momentum nucleon-nucleon interaction and shell-model calculations

    Full text link
    We discuss the use of the low-momentum nucleon-nucleon NN interaction V-low-k in the derivation of the shell-model effective interaction and emphasize its practical value as an alternative to the Brueckner G-matrix method. We present some selected results of our current study of exotic nuclei around closed shells, which have been obtained starting from the CD-Bonn potential. We also show some results of calculations performed with different phase-shift equivalent NN potentials, and discuss the effect of changes in the cutoff momentum which defines the V-low-k potential.Comment: 5 pages, 5 figures, 1 table, Talk presented at CDN05, 31 Jan - 4 Feb 2005, University of Tokyo, Japa

    Demonstration of acoustic waveguiding and tight bending in phononic crystals

    Get PDF
    Citation: Baboly, M. G., Raza, A., Brady, J., Reinke, C. M., Leseman, Z. C., & El-Kady, I. (2016). Demonstration of acoustic waveguiding and tight bending in phononic crystals. Applied Physics Letters, 109(18), 4. doi:10.1063/1.4966463The systematic design, fabrication, and characterization of an isolated, single-mode, 90 degrees bend phononic crystal (PnC) waveguide are presented. A PnC consisting of a 2D square array of circular air holes in an aluminum substrate is used, and waveguides are created by introducing a line defect in the PnC lattice. A high transmission coefficient is observed (-1 dB) for the straight sections of the waveguide, and an overall 2.3 dB transmission loss is observed (a transmission coefficient of 76%) for the 90 degrees bend. Further optimization of the structure may yield higher transmission efficiencies. This manuscript shows the complete design process for an engineered 90 degrees bend PnC waveguide from inception to experimental demonstration. Published by AIP Publishing

    Probing neutrino mass hierarchies and ϕ13\phi_{13} with supernova neutrinos

    Get PDF
    We investigate the feasibility of probing the neutrino mass hierarchy and the mixing angle ϕ13\phi_{13} with the neutrino burst from a future supernova. An inverse power-law density ρrn\rho \sim r^{n} with varying nn is adopted in the analysis as the density profile of a typical core-collapse supernova. The survival probabilities of νe\nu_{e} and νˉe\bar{\nu}_{e} are shown to reduce to two-dimensional functions of nn and ϕ13\phi_{13}. It is found that in the nsin2ϕ13n-\sin^{2} \phi_{13} parameter space, the 3D plots of the probability functions exhibit highly non-trivial structures that are sensitive to the mass hierarchy, the mixing angle ϕ13\phi_{13}, and the value of nn. The conditions that lead to observable differences in the 3D plots are established. With the uncertainty of nn considered, a qualitative analysis of the Earth matter effect is also included.Comment: 16 pages, 3 figures. Ref [11] added, and some typos correcte

    Primordial Gravitational Waves Enhancement

    Full text link
    We reconsider the enhancement of primordial gravitational waves that arises from a quantum gravitational model of inflation. A distinctive feature of this model is that the end of inflation witnesses a brief phase during which the Hubble parameter oscillates in sign, changing the usual Hubble friction to anti-friction. An earlier analysis of this model was based on numerically evolving the graviton mode functions after guessing their initial conditions near the end of inflation. The current study is based on an equation which directly evolves the normalized square of the magnitude. We are also able to make a very reliable estimate for the initial condition using a rapidly converging expansion for the sub-horizon regime. Results are obtained for the energy density per logarithmic wave number as a fraction of the critical density. These results exhibit how the enhanced signal depends upon the number of oscillatory periods; they also show the resonant effects associated with particular wave numbers.Comment: 25 pages, 14 figure

    Supernova neutrinos in the light of FCNC

    Get PDF
    We study the effect of including flavor changing neutral currents (FCNC) in the analysis of the neutrino signal of a supernova burst. When we include the effect of the FCNC which are beyond the standard model (SM) in the study of the MSW resonant conversion, we obtain dramatic changes in the \Delta m^2-sin^2(2\theta) probability contours for neutrino detection.Comment: 8 pages in ReVTeX,3 figures. Revised manuscript submitted to Phys. Rev.

    Possible Enhancement of High Frequency Gravitational Waves

    Full text link
    We study the tensor perturbations in a class of non-local, purely gravitational models which naturally end inflation in a distinctive phase of oscillations with slight and short violations of the weak energy condition. We find the usual generic form for the tensor power spectrum. The presence of the oscillatory phase leads to an enhancement of gravitational waves with frequencies somewhat less than 10^{10} Hz.Comment: 27 pages, 11 figures, LaTeX.2

    Nodeless superconductivity in the cage-type superconductor Sc5Ru6Sn18 with preserved time-reversal symmetry

    Full text link
    We report the single-crystal synthesis and detailed investigations of the cage-type superconductor Sc5Ru6Sn18, using powder x-ray diffraction (XRD), magnetization, specific-heat and muon-spin relaxation (muSR) measurements. Sc5Ru6Sn18 crystallizes in a tetragonal structure (space group I41/acd) with the lattice parameters a = 1.387(3) nm and c = 2.641(5) nm. Both DC and AC magnetization measurements prove the type-II superconductivity in Sc5Ru6Sn18 with Tc = 3.5(1) K, a lower critical field H_c1 (0) = 157(9) Oe and an upper critical field, H_c2 (0) = 26(1) kOe. The zero-field electronic specific-heat data are well fitted using a single-gap BCS model, with superconducting gap = 0.64(1) meV. The Sommerfeld constant varies linearly with the applied magnetic field, indicating s-wave superconductivity in Sc5Ru6Sn18. Specific-heat and transverse-field (TF) muSR measurements reveal that Sc5Ru6Sn18 is a superconductor with strong electron-phonon coupling, with TF-muSR also suggesting the single-gap s-wave character of the superconductivity. Furthermore, zero-field muSR measurements do not detect spontaneous magnetic fields below Tc, hence implying that time-reversal symmetry is preserved in Sc5Ru6Sn18.Comment: 23 pages, 11 figure

    Variational Principle for Mixed Classical-Quantum Systems

    Full text link
    An extended variational principle providing the equations of motion for a system consisting of interacting classical, quasiclassical and quantum components is presented, and applied to the model of bilinear coupling. The relevant dynamical variables are expressed in the form of a quantum state vector which includes the action of the classical subsystem in its phase factor. It is shown that the statistical ensemble of Brownian state vectors for a quantum particle in a classical thermal environment can be described by a density matrix evolving according to a nonlinear quantum Fokker-Planck equation. Exact solutions of this equation are obtained for a two-level system in the limit of high temperatures, considering both stationary and nonstationary initial states. A treatment of the common time shared by the quantum system and its classical environment, as a collective variable rather than as a parameter, is presented in the Appendix.Comment: 16 pages, LaTex; added Figure 2 and Figure
    corecore