89 research outputs found

    An introduction to cosmology

    Full text link
    Cosmology is becoming an important tool to test particle physics models. We provide an overview of the standard model of cosmology with an emphasis on the observations relevant for testing fundamental physics.Comment: Lectures given at the CERN Latin-American School of High Energy Physics CLASHEP 2015, Ibarra, Ecuador. Submitted for publication in a CERN Yellow Repor

    Constraints on primordial magnetic fields from the optical depth of the cosmic microwave background

    Full text link
    Damping of magnetic fields via ambipolar diffusion and decay of magnetohydrodynamical (MHD) turbulence in the post decoupling era heats the intergalactic medium (IGM). Delayed recombination of hydrogen atoms in the IGM yields an optical depth to scattering of the cosmic microwave background (CMB). The optical depth generated at z10z\gg 10 does not affect the "reionization bump" of the CMB polarization power spectrum at low multipoles, but affects the temperature and polarization power spectra at high multipoles. Writing the present-day energy density of fields smoothed over the damping scale at the decoupling epoch as ρB,0=B02/2\rho_{B,0}=B_{0}^2/2, we constrain B0B_0 as a function of the spectral index, nBn_B. Using the Planck 2013 likelihood code that uses the Planck temperature and lensing data together with the WMAP 9-year polarization data, we find the 95% upper bounds of B0<0.63B_0<0.63, 0.39, and 0.18~nG for nB=2.9n_B=-2.9, 2.5-2.5, and 1.5-1.5, respectively. For these spectral indices, the optical depth is dominated by dissipation of the decaying MHD turbulence that occurs shortly after the decoupling epoch. Our limits are stronger than the previous limits ignoring the effects of the fields on ionization history. Inverse Compton scattering of CMB photons off electrons in the heated IGM distorts the thermal spectrum of CMB. Our limits on B0B_0 imply that the yy-type distortion from dissipation of fields in the post decoupling era should be smaller than 10910^{-9}, 4×1094\times10^{-9}, and 10910^{-9}, respectively.Comment: 14 pages, 30 figures, calculations revised and updated, accepted for publication in JCA
    corecore