3 research outputs found

    Factors of subjective heat stress of urban citizens in contexts of everyday life

    Get PDF
    Heat waves and the consequent heat stress of urban populations have a growing relevance in urban risk management and strategies of urban adaptation to climate change. In this context, social science studies on subjective heat stress of urban citizens are a new emerging field. To contribute to the understanding of subjective heat stress and its major determinants in a daily life perspective, we conducted a questionnaire survey with 323 respondents in Karlsruhe, Germany, after a heat wave in July and August 2013. Statistical data analysis showed that heat stress is an issue permeating everyday activities. It was found that the subjective heat stress at home is lower than at work and in general. Subjective heat stress in general, at home, and at work was determined by the health impairments experienced during the heat and the feeling of being helplessly exposed to the heat. For heat stress at home, additionally characteristics of the residential building and the built environment played a role. Although the rate of implemented coping measures was rather high, coping measures showed no uniform effect for the subjective heat stress. The results furthermore show that coping with heat is performed within the scopes of action in daily life. We conclude that in terms of urban adaptation strategies, further research is needed to understand how various processes of daily social (work) life enable or limit individual coping and adaptation capacities and that communication strategies are important for building capacities to better cope with future heat waves

    Investigation of superstorm Sandy 2012 in a multi-disciplinary approach

    Get PDF
    At the end of October 2012, Hurricane Sandy moved from the Caribbean Sea into the Atlantic Ocean and entered the United States not far from New York. Along its track, Sandy caused more than 200 fatalities and severe losses in Jamaica, The Bahamas, Haiti, Cuba, and the US. This paper demonstrates the capability and potential for near-real-time analysis of catastrophes. It is shown that the impact of Sandy was driven by the superposition of different extremes (high wind speeds, storm surge, heavy precipitation) and by cascading effects. In particular the interaction between Sandy and an extra-tropical weather system created a huge storm that affected large areas in the US. It is examined how Sandy compares to historic hurricane events, both from a hydro-meteorological and impact perspective. The distribution of losses to different sectors of the economy is calculated with simple input-output models as well as government estimates. Direct economic losses are estimated about USD 4.2 billion in the Caribbean and between USD 78 and 97 billion in the US. Indirect economic losses from power outages is estimated in the order of USD 16.3 billion. Modelling sector-specific dependencies quantifies total business interruption losses between USD 10.8 and 15.5 billion. Thus, seven years after the record impact of Hurricane Katrina in 2005, Hurricane Sandy is the second costliest hurricane in the history of the United States

    Investigation of superstorm Sandy 2012 in a multi-disciplinary approach

    Get PDF
    At the end of October 2012, Hurricane Sandy moved from the Caribbean Sea into the Atlantic Ocean and entered the United States not far from New York. Along its track, Sandy caused more than 200 fatalities and severe losses in Jamaica, The Bahamas, Haiti, Cuba, and the US. This paper demonstrates the capability and potential for near-real-time analysis of catastrophes. It is shown that the impact of Sandy was driven by the superposition of different extremes (high wind speeds, storm surge, heavy precipitation) and by cascading effects. In particular the interaction between Sandy and an extra-tropical weather system created a huge storm that affected large areas in the US. It is examined how Sandy compares to historic hurricane events, both from a hydro-meteorological and impact perspective. The distribution of losses to different sectors of the economy is calculated with simple input-output models as well as government estimates. Direct economic losses are estimated about USD 4.2 billion in the Caribbean and between USD 78 and 97 billion in the US. Indirect economic losses from power outages is estimated in the order of USD 16.3 billion. Modelling sector-specific dependencies quantifies total business interruption losses between USD 10.8 and 15.5 billion. Thus, seven years after the record impact of Hurricane Katrina in 2005, Hurricane Sandy is the second costliest hurricane in the history of the United States
    corecore