13 research outputs found

    Flexible Ink‐Jet Printed Polymer Light‐Emitting Diodes using a Self‐Hosted Non‐Conjugated TADF Polymer

    Get PDF
    Thermally activated delayed fluorescent (TADF) emitters have become the leading emissive materials for highly efficient organic light-emitting diodes (OLEDs). The deposition of these materials in scalable and cost-effective ways is paramount when looking toward the future of OLED applications. Herein, a simple OLED with fully solution-processed organic layers is introduced, where the TADF emissive layer is ink-jet printed. The TADF polymer has electron and hole conductive side chains, simplifying the fabrication process by removing the need for additional host materials. The OLED has a peak emission of 502 nm and a maximum luminance of close to 9600 cd m−2_{−2}. The self-hosted TADF polymer is also demonstrated in a flexible OLED, reaching a maximum luminance of over 2000 cd m−2_{−2}. These results demonstrate the potential applications of this self-hosted TADF polymer in flexible ink-jet printed OLEDs and, therefore, for a more scalable fabrication process

    Inkjet‐Printed Self‐Hosted TADF Polymer Light‐Emitting Diodes

    Get PDF
    Thermally activated delayed fluorescent (TADF) materials are extensively investigated as organic light-emitting diodes (OLEDs) with TADF emitting layers demonstrating high efficiency without the use of heavy metal complexes. Therefore, solution-processable and printable TADF emitters are highly desirable, moving away from expensive vacuum deposition techniques. In addition, using emissive materials not requiring an external host simplifies the fabrication process significantly. Herein, OLEDs using a solution-processable TADF polymer that do not need an external host are introduced. The non-conjugated TADF polymer features a TADF emitter (4-(9H-carbazol-9-yl)-2-(3′-hydroxy-[1,1′-biphenyl]-3-yl)-isoindoline-1,3-dione) as a side chain, as well as a hole-transporting side chain and an electron-transporting side chain on an inactive polymer backbone. All organic layers of the OLEDs are fabricated using solution processing methods. The OLEDs with inkjet-printed emissive layers have comparable maximum current and external quantum efficiency as their spin-coated counterparts, exceeding luminance of 2000 cd m−2^{-2}. The herein-explored strategy is a viable route toward self-hosted printable TADF OLEDs

    Wavelength-Gated Photochemical Synthesis of Phenalene Diimides

    Get PDF
    Herein, we pioneer a wavelength‐gated synthesis route to phenalene diimides. Consecutive Diels–Alder reactions of methylisophthalaldehydes and maleimides afford hexahydro‐phenalene‐1,6‐diol diimides via 5‐formyl‐hexahydro‐benzo[f]isoindoles as the intermediate. Both photoreactions are efficient (82–99 % yield) and exhibit excellent diastereoselectivity (62–98 % d.r.). The wavelength‐gated nature of the stepwise reaction enables the modular construction of phenalene diimide scaffolds by choice of substrate and wavelength. Importantly, this synthetic methodology opens a facile avenue to a new class of persistent phenalenyl diimide neutral radicals, constituting a versatile route to spin‐active molecules

    Advanced polymer inks for solution-based OLED manufacturing

    No full text
    This thesis introduces a key step towards the industrial manufacturing of Organic Light Emitting Diodes (OLED) used in display technologies and solid-state lighting. Thin polymer films for OLED devices can be deposited by resource efficient, precise ink-jet printing and through post-printing irradiation to form resistant networks suitable for multi-layer fabrication. Tailored polymers were designed to incorporate all relevant components such as the fluorescence emitter, the photocrosslinkers as well as the host material. The functional polymer’s composition and the light-driven crosslinking conditions were optimised

    Flexible Ink-Jet Printed Polymer Light-Emitting Diodes using a Self-Hosted Non-Conjugated TADF Polymer

    No full text
    Thermally activated delayed fluorescent (TADF) emitters have become the leading emissive materials for highly efficient organic light-emitting diodes (OLEDs). The deposition of these materials in scalable and cost-effective ways is paramount when looking toward the future of OLED applications. Herein, a simple OLED with fully solution-processed organic layers is introduced, where the TADF emissive layer is ink-jet printed. The TADF polymer has electron and hole conductive side chains, simplifying the fabrication process by removing the need for additional host materials. The OLED has a peak emission of 502 nm and a maximum luminance of close to 9600 cd m−2. The self-hosted TADF polymer is also demonstrated in a flexible OLED, reaching a maximum luminance of over 2000 cd m−2. These results demonstrate the potential applications of this self-hosted TADF polymer in flexible ink-jet printed OLEDs and, therefore, for a more scalable fabrication process.</p

    Emissive semi-interpenetrating polymer networks for ink-jet printed multilayer OLEDs

    No full text
    Solution-processing of multilayered Organic Light Emitting Diodes (OLEDs) remains a challenge that is often addressed by cross-linking polymer precursors into insoluble networks. Herein, we blend an emissive polymer carrying a Thermally Activated Delayed Fluorescence (TADF) emitter and a host species with a photo-cross-linkable polymer containing ortho-methylbenzaldehyde and maleimide groups as reactive cross-linkers to form a Semi-Interpenetrating Polymer Network (SIPN) upon irradiation at 365 nm. The progress of the cross-linking via Diels–Alder [4 + 2]-cycloaddition is monitored by FT-IR-spectroscopy and is correlated with the solvent resistance of the SIPN. Furthermore, the influence of the molecular weight and the cross-linker content on the efficiency of the cross-linking are investigated. The resulting polymer films show a high solvent resistance evidenced by photoluminescence and AFM measurements and are thus suitable for a successive solution-processed layer. Furthermore, a comonomer carrying the commercial host molecule 1,3-bis(N-carbazolyl)benzene (mCP) was synthesized in high yields, copolymerized and integrated in the emissive SIPN with good resistance against organic solvents. Lastly, the polymer blends were processed with an ink-jet printer and turned into an insoluble SIPN.<br/

    Inkjet‐Printed Self‐Hosted TADF Polymer Light‐Emitting Diodes

    No full text
    Thermally activated delayed fluorescent (TADF) materials are extensively investigated as organic light-emitting diodes (OLEDs) with TADF emitting layers demonstrating high efficiency without the use of heavy metal complexes. Therefore, solution-processable and printable TADF emitters are highly desirable, moving away from expensive vacuum deposition techniques. In addition, using emissive materials not requiring an external host simplifies the fabrication process significantly. Herein, OLEDs using a solution-processable TADF polymer that do not need an external host are introduced. The non-conjugated TADF polymer features a TADF emitter (4-(9H-carbazol-9-yl)-2-(3′-hydroxy-[1,1′-biphenyl]-3-yl)-isoindoline-1,3-dione) as a side chain, as well as a hole-transporting side chain and an electron-transporting side chain on an inactive polymer backbone. All organic layers of the OLEDs are fabricated using solution processing methods. The OLEDs with inkjet-printed emissive layers have comparable maximum current and external quantum efficiency as their spin-coated counterparts, exceeding luminance of 2000 cd m−2. The herein-explored strategy is a viable route toward self-hosted printable TADF OLEDs.</p

    A printable thermally activated delayed fluorescence polymer light emitting diode

    No full text
    Amongst emissive materials for organic light emitting diodes (OLEDs), thermally activated delayed fluorescence (TADF) materials have shown substantial promise in the last few years. For OLEDs, solution processable and printable emissive materials are highly desirable as printing allows for precise patterning without masks, enables deposition of nanometer scale thicknesses and results in minimal wastage of material. Herein, we introduce a solution processable TADF emitting polymer as an emissive material for OLEDs. The bespoke polymer structure features the TADF emitter 4-(9H-carbazol9-yl)-2-(3′-hydroxy-[1,1′-biphenyl]-3-yl)isoindoline-1,3-dione as a pendant group on a poly(methyl methacrylate) based polymer chain. The resulting OLEDs have a peak emission wavelength of 520 nm with a maximum luminance of around 4700 cd m−2. The peak emission wavelength can be blue-shifted by exciplex management to achieve a peak wavelength of 494 nm. Critically, we employed the TADF-containing polymer system to ink-jet print OLEDs, demonstrating that such polymers are viable for printable OLEDs

    Wavelength-Gated Photochemical Synthesis of Phenalene Diimides

    No full text
    Herein, we pioneer a wavelength-gated synthesis route to phenalene diimides. Consecutive Diels–Alder reactions of methylisophthalaldehydes and maleimides afford hexahydro-phenalene-1,6-diol diimides via 5-formyl-hexahydro-benzo[f]isoindoles as the intermediate. Both photoreactions are efficient (82–99 % yield) and exhibit excellent diastereoselectivity (62–98 % d.r.). The wavelength-gated nature of the stepwise reaction enables the modular construction of phenalene diimide scaffolds by choice of substrate and wavelength. Importantly, this synthetic methodology opens a facile avenue to a new class of persistent phenalenyl diimide neutral radicals, constituting a versatile route to spin-active molecules.</p

    Photo-cross-linkable polymer inks for solution-based OLED fabrication

    No full text
    We introduce a catalyst-free, highly efficient, ambient temperature Diels-Alder reaction employing o-methylbenzaldehyde derivatives as photocaged dienes as an ideal approach for forming three-dimensional insoluble networks for inkjet printing of OLED emissive layer. Herein, poly(methyl methacrylate) based polymers containing 4-(9H-carbazol-9-yl)-2-(3′-hydroxy-[1,1′-biphenyl]-3-yl)isoindoline-1,3-dione as a blue-green (λ = 495-500 nm) thermally activated delayed fluorescence (TADF) emitter and a photochemically active maleimide/o-methylbenzaldehyde cross-linker couple were synthesized and their photo-cross-linking behavior was studied. Time resolved fluorescence measurements confirm that the TADF properties are maintained upon integration in a polymer network and HOMO/LUMO levels of the emitter species remain unchanged by the photo-cross-linking at 365 nm of the polymer chains. The network formation of the fluorescent films is evidenced by solvent resistance tests and monitored by Fourier transform infrared (FT-IR) spectroscopy as well as time of flight secondary ion mass spectroscopy (ToF-SIMS), showing the consumption of maleimide and o-methylbenzaldehyde groups with increasing irradiation time. The surface roughness is investigated via atomic force microscopy (AFM) and found to be unchanged by a solvent wash after the cross-linking. Furthermore, confirmation that the polymer solution can be printed on an inkjet-printer and subsequently photo-cross-linked for multilayer OLED device fabrication is obtained
    corecore